N Object oriented programming in JS

Overview

®m Current situation

B ES6 : standard and clean and simple
®m Using ES6 in node.js today

®m ES5 and before : legacy

pdf

tp

1/lpgo-IPP-




I Current situation

B ES6 has defined a standard OOP similar to other languages
® OOP in JS before ES6 is a mess of conflicting systems

B using new with a function as constructor

B inheritance with the prototype property of the constructor

tp

1/lpgo-IPP-




ES6 class
B class
B constructor
B method
B static method

class User {
constructor(name, address) {
this.name = name;
this.address = address;
3
method() { return 4; }
static m(a, b) { return 5; }

const us = new User('JC', 'my address');
us.name
us.method()

I IMT-TP-IDS-MM




I =56 inheritance

B extends
® method overloading
B super

class SuperUser extends User {
constructor(name, address, group) {
super (name, address);

this.group = group;

}
method() { return super.method()+1;}

i
P 1/lpgo-IPP-




ES6 getter and setter

class User {
constructor(name, address) {
this._name = name;
this._address = address;
3
get name() { return this._name;}
set name(newname) { this._name = newname; }

const us = new User('JC', 'my address');
us.name

B You have to use _ on the field names or some sort of
naming convention to avoid infinite loops
B You can still access us._name, it is not private

IMT-TP-IDS-MM




B Eso import and export

B To import fun from module npmmod (managed by npm),
use : import {fun} from 'npmmod';

® To import fun from module mod (yours, residing in mod.js or
mod.mjs), use : import {fun} from './mod';

® You can import more : import {fun, fun2, funl as foo}
from 'mod'; where | renamed fun1 as foo for use in the
current file

B |f you want to manipulate the module itself : import default
from 'mod' then you can use mod. fun, mod. fun2, etc.

B You can rename the module with : import default as
othername from 'mod'

B You can export a const, a let or a function by putting export
in front of the definition

If the file extension is .mjs, node understands this file to be in
ES6 syntax. If the file extension is . js and the package. json has
a "type"”: "module”line, node also understands this file to beﬂipn

./1pgo-IPP-

IMT-TP-IDS-MM




I Next is legacy

B | egacy means old, out-dated stuff

B The following slides are here for information

® Do not use this way for new code

B |f you need to fix existing code, then you have to understand
it. ..

tp

1/lpgo-IPP-




I | cgacy constructor

function User(name) {
this.name = name;

b

var bob = new User('Bob');
console.log(bob.name);

B Many modules and libraries still use this form.
B You can also add fields which are functions to have methods

tp

1/lpgo-IPP-




I | cgacy method

User.prototype.walk = function() {
console.log(this.name + ' is walking.');

g

var bob = new User('Bob');
bob.walk();

B Many modules and libraries still use this form.

i
P 1/lpgo-IPP-




Legacy inheritance

function Nerd(name, programminglanguage) {
this.name = name;
this.programminglanguage = programminglLanguage;

}
Nerd.prototype = new User('x');

Nerd.prototype.code = function() {
console.log('The nerd called ' + this.name + ' is codi

g

var jc = new Nerd('JC', 'JavaScript');
jc.walk();
jc.code();

IMT-TP-IDS-MM




B Summary of this lesson

B messy OO history

B ES6 class, constructor, inheritance, getter, setter
B ES6 class import/export

B |egacy

tp

1/lpgo-IPP-




