
Object oriented programming in JS

Overview

Current situation
ES6 : standard and clean and simple
Using ES6 in node.js today
ES5 and before : legacy

pdf

1/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Current situation

ES6 has defined a standard OOP similar to other languages
OOP in JS before ES6 is a mess of conflicting systems
using new with a function as constructor
inheritance with the prototype property of the constructor

2/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



ES6 class
class
constructor
method
static method

class User {
constructor(name, address) {

this.name = name;
this.address = address;

}
method() { return 4; }
static m(a, b) { return 5; }

}

const us = new User('JC', 'my address');
us.name // JC
us.method() // 4
User.m(3,4) // 53/11 IMT-TP-IDS-MM

../tp
../logo-IPP-small



ES6 inheritance

extends
method overloading
super

class SuperUser extends User {
constructor(name, address, group) {

super(name, address);
this.group = group;

}
method() { return super.method()+1;}

}

4/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



ES6 getter and setter
class User {

constructor(name, address) {
this._name = name;
this._address = address;

}
get name() { return this._name;}
set name(newname) { this._name = newname; }

}

const us = new User('JC', 'my address');
us.name // JC

You have to use _ on the field names or some sort of
naming convention to avoid infinite loops
You can still access us._name, it is not private

5/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



ES6 import and export
To import fun from module npmmod (managed by npm),
use : import {fun} from 'npmmod';
To import fun from module mod (yours, residing in mod.js or
mod.mjs), use : import {fun} from './mod';
You can import more : import {fun, fun2, fun1 as foo}
from 'mod'; where I renamed fun1 as foo for use in the
current file
If you want to manipulate the module itself : import default
from 'mod' then you can use mod.fun, mod.fun2, etc.
You can rename the module with : import default as
othername from 'mod'
You can export a const, a let or a function by putting export
in front of the definition

If the file extension is .mjs, node understands this file to be in
ES6 syntax. If the file extension is .js and the package.json has
a "type": "module"line, node also understands this file to be in
ES6 syntax.6/11 IMT-TP-IDS-MM

../tp
../logo-IPP-small



Next is legacy

Legacy means old, out-dated stuff
The following slides are here for information
Do not use this way for new code
If you need to fix existing code, then you have to understand
it. . .

7/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Legacy constructor

function User(name) {
this.name = name;

}

var bob = new User('Bob');
console.log(bob.name); // 'Bob'

Many modules and libraries still use this form.
You can also add fields which are functions to have methods

8/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Legacy method

// ES5 adding a method to the User prototype
User.prototype.walk = function() {

console.log(this.name + ' is walking.');
};

var bob = new User('Bob');
bob.walk(); // 'Bob is walking.'

Many modules and libraries still use this form.

9/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Legacy inheritance
// ES5 Prototype inheritance
function Nerd(name, programmingLanguage) {

this.name = name;
this.programmingLanguage = programmingLanguage;

}

Nerd.prototype = new User('x');

Nerd.prototype.code = function() {
console.log('The nerd called ' + this.name + ' is coding in ' + this.programmingLanguage + '.');

};

var jc = new Nerd('JC', 'JavaScript');
jc.walk(); // 'JC is walking.'
jc.code(); // 'The nerd called JC is coding in JavaScript.'

10/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Summary of this lesson

messy OO history
ES6 class, constructor, inheritance, getter, setter
ES6 class import/export
legacy

11/11 IMT-TP-IDS-MM
../tp

../logo-IPP-small


