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Introduction

Tissue molecular diffusion
Diffusion MRI

quantifies molecular diffusion (mainly water) in living tissues
non-invasively
used in clinics and research to map the architecture of the white matter
tracts, pelvic nerves, myocardiac fibers, etc.

Functional information
PET

low temporal and spatial resolution
f-MRI

good spatial resolution
average temporal resolution

EEG, MEG
very good temporal resolution
good spatial resolution (especially MEG) but no direct localization
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Diffusion

Definition of diffusion
Diffusion is a mass transport process where molecules move without bulk
motion. Drop of ink will diffuse without bulk water motion.
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Fick’s laws of diffusion

J = −D∇c(x, t) (1)

The flux of particles J arises from a gradient ∇ in concentration c(x, t) at
a certain spatial position x and time point t. We assume that the medium
is isotropic, D is a scalar diffusion coefficient, and thus the diffusion is the
same in all directions. Due to the minus sign, the flux J goes from high
concentration to low concentration.
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Fick’s laws of diffusion

From the first Fick’s law and the law of conservation of mass, we can write:

∂c(x, t)
∂t

+ divJ = 0︸ ︷︷ ︸
conservation of mass

→ ∂c(x, t)
∂t

= div(D∇c(x, t)) = D∇2c(x, t)) (2)

This is the second law of Fick, known as diffusion equation and, if the
medium is isotropic, it is similar to the heat equation. The symbol div
means divergence and ∇2 is the Laplace operator.

The Fick’s equations are macroscopic. How can we explain the
Brownian motion ?
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Brownian motion

Brownian motion
Random motion due to heat of particles suspended in a fluid. Each particle
stays for a certain period τ in a precise location before moving to a random
new location. Each particle acts independently ! Microscopic movement.
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Einstein’s contribution

Einstein reconciles the Fickian and the Brownian pictures by introducing
the “displacement distribution” p(x, t|x0, t0), which quantifies the fraction
of particles moving from x0 at time t0 to x after a time t at a fixed
temperature. It obeys to the partial differential equation [2]:

∂p(x, t|x0, t0)
∂t

= div(D∇p(x, t|x0, t0)) (3)

If t0 = 0 the solution is the Gaussian distribution [2]:

p(x, t|x0, 0) = 1√
(2πDt)3 exp

(
−(x− x0)2

4Dt

)
(4)
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Einstein’s equation

If number of particles is large and they are free to diffuse, their
ensemble average is:

〈(x− x0)2〉 = 2Ddt (5)

This is the Einstein’s equation where d is the number of dimension.
〈(x− x0)2〉 refers to the mean squared displacement of the particles.
It means that a particle in x0 at time t0 = 0 will move in all
directions around x0 with the same probability. The isoprobability
surface is a sphere.
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Apparent Diffusion Coefficient (ADC)

D = 〈(x− x0)2〉
2dt

(6)

The diffusion constant D relates the average displacement of the
molecules over an area (x− x0)2 to the observation time t. The
higher the value of D, the more mobile the molecules !
As for the T2 and T ∗

2 in the previous lecture, in the clinical setting we
can not measure D but an Apparent Diffusion Coefficient (ADC or
Deff). Diffusion in vivo can not be separated from other sources of
water mobility, such as the membrane permeability, due to the “low”
MRI spatial resolution (i.e. mm).
Typical values are t = 10− 50 ms, 〈(x− x0)2〉 = 10− 12 µm2
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Stejskal-Tanner diffusion encoding

A diffusion-weighted (DW) pulse is a T2-weighted spin-echo sequence
with the addition of two diffusion gradients which are applied along
the same axis before and after the 180° pulse. See Fig. from [3].
The two gradients have the same magnitude G and duration δ but
opposite direction (180°) ! Remember that we can choose any axis
using combinations of Gx, Gy and Gz
After the first gradient, protons begin to precess at different rates.
Since the protons are moving, the second gradient will not refocus the
spins and there will be a loss in the signal intensity
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Diffusion weighted MRI

Skb
S0

= exp(−b · ADC) (7)

Skb is the diffusion-weighted signal intensity with a gradient applied
along a direction k, S0 is the diffusion-weighted signal intensity
without gradient and b is related to the degree of diffusion-weighting.
Using rectangular pulses we have:

b = γ2G2δ2(∆− δ/3) (8)

where γ is the gyromagnetic ratio and ∆ is the span of time between
the first gradient and the 180° pulse. Usual values of b are between
1000 and 3000.
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Diffusion weighted MRI
By raising b we increase the loss of signal intensity. This means
increasing either G and/or δ and/or ∆
b and TE are linked by the relationship TE ≈

(
12b
γ2

)1/3
[4]

Higher b-values increase contrast but they also make DW MRI more
sensitive to subject motion, lead to a longer TE and to a lower SNR.
Trade-off (see Fig. from [4])
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Diffusion weighted MRI

In isotropic diffusion, molecular motion is equal in all directions.
Examples in the human brain are the CSF and the gray matter.
White matter tracts (mainly myelinated axons) make water molecules
follow a precise direction (parallel to thh tract). Anisotropic diffusion.
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Diffusion weighted MRI
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Diffusion tensor imaging

For isotropic tissues we just need 2 image acquisitions: 1 without
gradient b = 0 and 1 with a gradient in any direction
For anisotropic tissues we need at least 7 image acquisitions: 1
without gradient b = 0 and 6 with gradients in different noncollinear
directions → Diffusion tensor D can be calculated
The diffusion tensor is a 3x3 covariance matrix which describes the
ADC in the 3D space. The diagonal elements (Dij > 0) are the
diffusion variances along the three orthogonal directions x, y and z.
The off-diagona elements are the covariance terms between the three
directions.

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (9)
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Diffusion tensor imaging
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Diffusion tensor imaging

We can rewrite the previous equations using a tensor D instead than
a scalar D:

J = −D∇c(x, t) (10)

p(x, t|x0, 0) = 1√
(4πt)3|D|

exp
(
−(x− x0)TD−1(x− x0)

4t

)
(11)

Sb
S0

= exp−

 ∑
i=x,y,z

∑
j=x,y,z

bi,jDi,j

 (12)

bi,j = γ2GiGj(δ2(∆− δ/3)) (13)
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Diffusion tensor imaging

log Sb
S0

=− bx,xDx,x − by,yDy,y − bz,zDz,z

− 2bx,yDx,y − 2bx,zDx,z − 2by,zDy,z

(14)

We have six unknowns to estimate. Thus we need at least 6
diffusion-encoding images (i.e. gradients) from different noncollinear
directions, in addition to one acquisition with b = 0
We perform N (N > 6) measurements (i.e. gradients) in different
non-collinear directions
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Diffusion tensor imaging

Let S be the [N, 1] vector containing [log S1
b
S0
, ..., log Sk

b
S0
, ..., log SN

b
S0

]T
for every measurement k
Let B be the [N, 6] matrix containing the values of b:

B = −


b1
xx b1

yy b1
zz 2b1

x,y 2b1
x,z 2b1

y,z

... ... ... ... ... ...
bkxx bkyy bkzz 2bkx,y 2bkx,z 2bky,z
... ... ... ... ... ...
bNxx bNyy bNzz 2bNx,y 2bNx,z 2bNy,z

 (15)

Let d be the [6, 1] vector containing the values of D:
[Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
It results: S = Bd

P. Gori 21 / 68



Diffusion tensor imaging

How to find the diffusion coefficients in d from the Eq. S = Bd ?
Inverse: d = B−1S → it works with square matrix, only 6
measurements, we perfectly fit the data, even the noise !
More measurements to reduce the effect of the noise. No more square
matrix. One could then minimize ||S −Bd||2F which is OLS
(Ordinary Least Squares): d = (BTB)−1BTS

OLS assumes homoskedasticity (variance of elements in S is the
same) but this is not true since we take log. We will have higher
variance for low signal and viceversa. A possible solution is to use a
weighted least square approach: d = (BTΣ−1B)−1BTΣ−1S where
Σ is a diagonal matrix with the squares of Skbi
Due to the exp term, non-linear regression techniques can also be
applied directly on Sbi

S0
.
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Diffusion tensor imaging - Considerations

Accuracy of DTI depends on the number of measurements (i.e.
gradient directions) → more measurements, less noise, more scan
time !
Image SNR can be improved by using larger voxels → increase partial
volume effect (i.e. mix/average of different tissues) !
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Diffusion tensor parameters

The three principal diffusion axes are the eigenvectors of D :

W TDW = Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 (16)

where the columns of W are the eigenvectors of D and the λi are
the relative eigenvalues
w1 and λ1 indicate the direction and magnitude of greatest water
diffusion (principal direction of axonal bundle)
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Diffusion tensor parameters

Different diffusion metrics are used to describe the microstructure in each
voxel. The two most important ones are:

Average diffusivity Dav = Tr(D)/3. This is also called magnitude of
diffusion (MD) or ADC
Fractional Anisotropy (FA):

FA =
√

3
2

√
(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2

λ2
1 + λ2

2 + λ2
3

(17)

FA is 0 when the the diffusion in the voxel is perfectly isotropic and 1
when is perfectly anisotropic, namely diffusion occurs only along the
first eigenvector.
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Diffusion tensor parameters

Figure 1: Image taken from [3]
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Fiber tractography

Fiber tractography is the most advanced technique to model and
visualize neural pathways
It uses the directional information from diffusion measurements at
each voxel to estimate the trajectories of the neural pathways
It can be divided into deterministic and probabilistic methods.
Deterministic methods use only the main direction at each voxel (e.g.
principal eigenvector)
Probabilistic methods compute a probability density function of
possible trajectories
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Deterministic streamline tractography

Streamlines (or fibers) are estimated by integrating the PDE:

∂r(t)
∂t

= v(r(t)) (18)

where r is the path, t is the “time” step and v is the vector field
defining the tangent to local path direction [2].
Most of the algorithms use the principal eigenvector e1 at each voxel
as v and they approximate Eq.18 using a Taylor expansion:
r(tk+1) ≈ r(tk) + τe1(r(tk))
Starting from a “seed” location within a voxel r(tk), we compute the
eigenvector e1 of the voxel and we move along that trajectory of a
step-size τ
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Deterministic streamline tractography
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Fiber tractography - Stopping criteria and constraints

We can put several seeds within a certain ROI or within the entire
brain (whole brain tractography) → first strategy may lead to
incomplete tract reconstruction, second strategy is preferred
Common stopping criteria are: low FA (e.g. FA<0.2), bending angle
too high (it depends on the bundle), mask of white matter used as
boundary
Common post-processing in clinics and research: after a whole-brain
tractography a specific neuro-anatomical tract is selected by manually
drawing one or more ROIs
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Fiber tractography - Stopping criteria and constraints

Figure 2: Image taken from [2]
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DTI - Applications

Figure 3: Segmentation of major white matter pathways of the brain. Image
taken from [2]
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DTI - Applications

Figure 4: Comparison of corticospinal tract before and after surgical resection of
tumor. Image taken from [2]
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DTI - Limitations

Crossing fibers: when in a voxel we have a crossing between two
neural pathways a single-tensor model is inaccurate → principal
eigenvector might not be coincident with the direction of the neural
pathways
Possible solutions: multiple tensor or advanced diffusion image
acquisition methods such as Q-ball, diffusion spectrum imaging and
HARDI [2].
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DTI limitations

Figure 5: Comparison of two diffusion models: DTI and CSD (constrained
spherical deconvolution). Image taken from “J Neurosurg 118, 2013”
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Probabilistic tractography

Noise in the data, coarse voxel resolution (partial volume/bundle
effect), imperfect model of diffusion → limitations for correct
estimate of neural pathways from DWI data.
Instead than using e1 one can compute the pdf of the fiber
orientation, using Gaussian distributions, Bayesian methods or
bootstrap methods, and sample a direction from this distribution
From every seed, we create several streamlines (i.e. 1000) where we
sample each time a different direction at each voxel → this provides a
degree of dispersion of the fibers due to uncertainty in the data
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Probabilistic tractography

Figure 6: Pdf of fiber orientation with a single neural pathway. Image taken from
[2]
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Probabilistic tractography

Figure 7: Connectivity distributions estimated with probabilistic tractography.
Image taken from HCP.
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Probabilistic Vs Deterministic tractography

Figure 8: Image taken from the PhD Thesis of P. Guevara
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Diffusion MRI - Conclusions

Anisotropic diffusion in white matter. Isotropic diffusion in gray
matter and CSF.
Diffusion tensor can describe orientation of neural pathways at each
voxel → problem with crossing fiber
Tractography estimates the trajectory of many axons (neural
pathways) within the white matter of the brain and it
models/visualizes them as 3D polylines → due to the coarse
resolution of DWI (mm3) we can not model single axons (µm)
Probabilistic tractography estimates a pdf of fiber orientation at each
voxel and not only the most likely direction as in the deterministic
tractography
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Functional NeuroImaging
PET

low temporal and spatial resolution
f-MRI

good spatial resolution
average temporal resolution

EEG, MEG
very good temporal resolution
good spatial resolution (especially MEG) but no direct localization
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Relation between anatomy and function

Cortex of the brain can be divided in areas which are dedicated to a
certain motor or sensory function
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Relation between anatomy and function
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Neurons as current generators

Figure 9: Source: A. Gramfort

Sensory stimuli activates
neurons of the cortex →
neurons generate time-varying
local electrical currents
(currents dipoles model [5])
According to the Maxwell’s
equations, we can compute
electric potential (EEG) and
magnetic fields (MEG)
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Neurons as current generators

Figure 10: Source: A. Gramfort

To generate a detectable signal,
we need thousands of neurons
spatially aligned and
synchronously activated →
Pyramidal cells are the major
contributor to EEG/MEG. They
are perpendicular to the cortical
surface
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Electroencephalography (EEG)

Figure 11: The international 10-20
system for scalp electrodes placement

Discovered in 1875 by Richard
Caton
Electrodes are placed in precise
and reproducible locations along
the scalp
Electrodes can be non-invasive
and invasive
Recording lasts typically
between 15-30 minutes
Up to 256 electrodes using a
cap or a net
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Magnetoencephalography (MEG)

Figure 12: Example of magnetically
shielded room. From Wikipedia.

Discovered in 1968 by David
Cohen
Signals emitted by the brain
(fT ) are smaller than Earth’s
magnetic field and magnetic
noise (µT ) → magnetic
shielding is necessary
Very sensitive magnetometer are
needed to measure the subtle
magnetic field of the brain.
Most used is SQUID
(superconducting quantum
interference device)
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Magnetoencephalography (MEG)

Figure 13: Example of MEG

Non-invasive
No magnets, no X-rays
Almost no noise
Patient can sit or lay down
Record signals from up to 300
sensors simultaneously
MEG device is 10 to 100 times
more expensive than an EEG
system
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M/EEG Measurements

Figure 14: Example of EEG signals. Sampling is usually between 250 and 1000 Hz.

High temporal resolution. What about spatial resolution ?
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M/EEG Measurements

At each time instant EEG sensors measure an electric potential field

Figure 15: Source: A. Gramfort
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M/EEG Measurements

Figure 16: Source: A. Gramfort

MEG has a better spatial resolution.
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M/EEG Measurements
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M/EEG Challenges

1 Signal Extraction
Signal processing, Denoising, Artifact rejection

2 Forward Problem
Maxwell Equations, Numerical solvers, Finite and Boundary Element
Method (BEM and FEM), Image Segmentation and meshing for head
modeling

3 Inverse problem
Deconvolution problem, ill-posed problem
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Artifacts
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Artifacts

High-pass filter (0.5–1 Hz) to remove low frequency artifacts such as
movement artifacts (e.g. eye blink)
Low-pass filter (35–70 Hz) to remove high-frequency artifacts such as
EMG (electromyogram) artifacts
Specific filters (e.g. notch filter) can be used to remove artifacts
caused by the electrical power lines (50 or 60 Hz)
Independent component analysis (ICA) can also be used to separate
artifacts from EEG signal
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Signal filtered (1-40 Hz)
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Forward problem

Predict the scalp electric
potential g (and the magnetic
field) produced by the activation
of the neurons (currents dipole
model)

Solve Poisson’s equation, via Maxwell’s equations, to find the scalp
potential g(r, rdip,d) at an electrode position r due to multiple
dipoles i (ensemble of neurons activated) with a dipole moment equal
to d = ded, where d is the magnitude, ed the orientation and it is
positioned at rdip.
The electrode potential at r is: M(r) =

∑
i g(r, rdipi

, edi
)di
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Forward problem

To solve this equation we need to model the properties of the different
tissues of the head (skin, skull, gray matter, white matter, etc.)
Main hypothesis: conductivity is piecewise-constant between different
tissues

Sphere model

Analytical solution, fast to compute,
very coarse and imprecise

Realistic model

Approximate solution (numerical
solver), more precise

P. Gori 60 / 68



Forward problem
For N electrodes, p dipoles, T time samples and noise E, we have [7]:

M = GX + E (19)

M =

M(r1, t1) ... M(r1, tT )
... ... ...

M(rN , t1) ... M(rN , tT )

 = [N x T ] (20)

G =

 g(r1, rdip1 , ed1) ... g(r1, rdipp , edp)
... ... ...

g(rN , rdip1 , ed1) ... g(rN , rdipp , edp)

 = [N x p] (21)

X =

d1(t1) ... d1(tT )
... ... ...

dp(t1) ... dp(tT )

 = [p x T ] (22)
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Inverse problem
Recover the current generators X that produce the M/EEG
measurements M
Ill-posed problem, more unknowns than number of equations →
Regularization !
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Inverse problem framework

X∗ = arg min
X

||M −GX||2F + γφ(X) (23)

||M −GX||2F : Data-term. It measures how well the model fits the
data.
φ(X): Regularization term. It controls the complexity of X by
imposing a constraint. Examples are the L2 ||X||22 (ridge) or L1
||X||1 (Lasso) norms.
γ is the trade-off between data fidelity term and regularization,
usually fixed by the user.
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Comparison between EEG and MEG

EEG
Portable and cheap
Low spatial resolution
Long time for subject
preparation
Sensitive to both perpendicular
and parallel dipoles to the scalp
It sees more and in more depth,
but it is less able to localize the
activity

MEG
Shielded room and expensive
Better spatial resolution.
Magnetic fields are less
distorted by head tissue.
Less time to prepare a subject
Insensitive to dipoles
perpendicular to the scalp
It sees less but it localizes
better the activity

By Combining EEG and MEG , we can remove from the EEG
measurements the signals coming from the surface detected with the
MEG. This allows the analysis of deeper brain signals.
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Applications - EEG

The rhythmic activity of EEG can be divided into bands of frequency:
Delta (<4 Hz): found during sleep and in babies
Theta (4-7 Hz): related to drowsiness in adults and teens
Alpha (8-13 Hz): eyes closed and relaxation; coma
Beta (>14 Hz): active thinking, focus, anxiety
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Applications - Epilepsy

Figure 17: Comparison of normal and epileptic EEG signal. From NN World 22(3)
P. Gori 66 / 68



Applications - EEG - Melomind

StartUp myBrain Technologies built here in Paris - Creators have an
academic itinerary similar to yours...
A new drug-free, easy-to-use, and perfectly safe solution to stress.
They identified the cognitive neuro-marker linked to relaxation and
created a coaching app and an EEG headset to enhance patient’s
abilities to relax.
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