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Simplifying and selecting relevant information...
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Introduction

Origin: study of porous media
Principle: study of objects (images) based on:
m shape, geometry, topology
m grey levels, colors
m neighborhood information
m Mathematical bases:
m set theory
topology
geometry
algebra (lattice theory)
probabilities, random closed sets
m functions
Main characteristics:
m non linear
® non invertible
m strong properties
m associated algorithms
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filtering

m segmentation

measures (distances, granulometry, integral geometry, topology,
stochastic processes...)

texture analysis
shape recognition

scene interpretation

Applications in numerous domains
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Four fundamental principles

Compatibility with translations
Compatibility with scaling
Local knowledge

Continuity (semi-continuity)
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Structuring element

m shape

B size

m origin (not necessarily in B)
m examples:

Continuous: Digital:

o()e
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Binary dilation

Minkowski addition:

XoY={x+y|xeX,yeY}
Binary dilation:
D(X,B) = X@B={x+y|x€X,yeB}(or =X B historically)
= UB={xeR"|BNX#}
xeX

(é = symmetrical of B with respect to space origin, By = x + B)
Properties of dilation:

m extensive (X C D(X, B)) iff O € B;

m increasing (X C Y = D(X,B) C D(Y,B));

m BC B = D(X,B) C D(X,B);

m commutes with union, not with intersection:

D(XUY,B) = D(X,B)UD(Y,B), D(XnY,B)C D(X,B)nD(Y, B);
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Binary erosion

E(X,B) = {xeR"|B,CX}
= {xeR"|VyeBx+yecX}=X0OB.
Properties of erosion:
m duality of erosion and dilation with respect to complementation:
E(X,B) = [D(X“,B)

anti-extensive (E(X, B) C X) iff O € B;
increasing (X C Y = E(X,B) C E(Y,B));
BC B' = E(X,B') C E(X,B);
commutes with intersection, not with union:
E[(XNY),B] = E(X,B)NE(Y,B), E[(XUY),B] 2 E(X,B)UE(Y,B

m iterativity property: E[E(X,B),B'l| = E(X,B® B').

= D[E(X, B), B'] € E[D(X, B"), B].
13 /128
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Binary opening

[ Xs = D[E(X, B), B |

Properties of opening:
m anti-extensive (X 2 Xg);
m increasing (X C Y = Xg C Y5g);
m idempotent ((Xg)s = Xg).
= Morphological filter
m BC B = Xg C Xg;

m (Xn)w = (Xor)n = Xmax(n,ny (with X, opening with a structuring
element of size n).
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Binary closing

[ XP=E[D(X,B), B |

Properties of closing:
m extensive (X C XB);
m increasing (X C Y = XB C YB),
m idempotent ((XB)B = XB).
= Morphological filter
= BC B = XBC XF,
- (Xn)n' — (Xn’)n — Xmax(n,n’);
= X5 = [(X)s]C.
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Digital case

m choice of the digital grid (both for the image and the structuring
element)

m translations on the grid

B same properties
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From sets to functions

m subgraph of a function on R” = subset of R"*!

m cuts of a function = sets
A= {xIf(x) = A}
D(f\, B) = [D(f, B)]x
m functional equivalents of set operations:

— sup/V

U 1N O C

%
%
%
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Dilation of a function by a flat structuring element

| Vx €R", D(f,B)(x) = sup{f(y) |y € B} |

Properties of functional dilation:

m extensivity iff O € B;

B increasingness;

m D(fVvg,B)=D(f,B)Vv D(g,B);
m D(f Ng,B) < D(f,B)AD(g, B);
m iterativity property.

It holds:
D(f\, B) = [D(f, B)]x
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Erosion of a function

| Vx eR", E(f,B)(x) = inf{f(y) | y € B} |

Properties of functional erosion:
m functional dilation and erosion are dual operators;
m anti-extensivity iff O € B;

increasingness;

E(fvg,B) = E(f,B)V E(g, B);

E(f Ng,B)=E(f,B) N E(g,B);

iterativity property.
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Functional opening

[ s = DIE(, B), B] |

Properties of functional opening:
B anti-extensive;
B increasing;
m idempotent.

= morphological filter
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Functional closing

| f®=E[D(f,B),B] |

Properties of functional closing:
B extensive;
B increasing;
m idempotent.

=- morphological filter

m duality between opening and closing
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Example

(a) Original image. Dilation of size 4 using (b) 4-connectivity structuring element, (c)
8-connectivity structuring element, (d) a discrete approximation of a disk. (e) Erosion of size 4

using 4-connectivity structuring element. (f) Opening of size 4. (g) Closing of size 4.
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Structuring functions

Dilation:
D(f,g)(x) = SLylp{f(y) +g(y —x)}

Erosion:
E(f.g)(x) = inf{f(y) — &ly — x)}

Flat structuring element:

0 on a compact set B
—00 elsewhere

g(x) = {
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Cpntrast e{1hancement .
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Contrast enhancement: ES 15, a = =02, a =7

=03, a=04=05
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Morphological gradient:
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m VX € A VA >0, ¢\(X)C X (¢ anti-extensive);

B Y(X,Y)EAVA>0, X CVY = ¢r(X)C oa(Y) (¢y increasing);

B VX e AVA>0,Vu>0 A>pu= ¢or(X) C ¢u(X) (¢ decreasing
with respect to the parameter);

BVA>0,Vu >0, ¢prod,=0¢u0¢\= d’max()\,u)-

(¢y) is a granulometry iff ¢, is an opening for each A\ and the class
of subsets A which are invariant under ¢, is included in the class of
subsets which are invariant under ¢, for A > u
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Vectorial functions (e.g. color images)

m Main difficulty: choice of an ordering

m component-wise max (or min): no good properties
Dilation

component—wise

~

maximum

I. Bloch Mathematical Morphology 43 /128



Choice of the structuring element

m depends on what one wants suppress / keep
m shape

B Size

Example: opening by disks or segments?

O

O
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Choice of the structuring element

m depends on what one wants suppress / keep
m shape
m size

Example: opening by disks or segments?

O

*

Rqg: a union of openings is an opening
I. Bloch Mathematical Morphology 44 /128




Mathematical bases of mathematical morphology

Set theory

m relations (C, N, U...)
m structuring element

Topology
m hit-or-miss topology (Fell's topology)
m myopic topology
m Hausdorff distance
m Lattice theory
m adjunctions
m algebraic operations
Probability theory
B P(ANK #0)
m random closed sets
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Hit-or-miss topology

m topology on closed subsets

m generated by 7K and F¢ (K compact and G open):
FR={FeF.FNK=0}
Fe={FeF,FNG#0}

m convergence in F: (Fp)nen converges towards F € F if:

VG eG,GNF£0,IN.Yn>N, GNF,#0
VK € K,KNF =0,3N',Yn> N, KNF,=0

Union is continuous from F x F in F but intersection is not

4

semi-continuity

I. Bloch Mathematical Morphology 46 / 128



f:Q—=F

m f upper semi-continuous (u.s.c.) if Vw € Q and V(wp)pen € Q
converging towards w :

limf (wy) C f(w)
m f lower semi-continuous (l.s.c.) if:
limf (wy) 2 f(w)

lim/lim = U/N of adherence points

| f continuous iff f I.s.c. and u.s.c.|

Intersection is u.s.c.
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Properties of morphological operations

m the dilation of a closed set by a compact set is continuous
m the dilation of a compact set by a compact set is continuous
m (F,K)— E(F,K) us.c.
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Myopic topology

m generated by:
KE={KeK,KNF=0,KnG#0}

(FeF, Geg)
m finer than the topology induced on K by the hit-or-miss topology
m equivalent on K\ () to the topology induced by the Hausdorff distance

§(K, K') = max{sup d(x, K'), sup d(x', K)}
xeK x'eK’

Rq: 6(K,K') = inf{e, K C D(K', B?),K' C D(K, B%)}
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Algebraic framework: complete lattices

Lattice: (7, <) (< ordering) such that V(x,y) € T,3xVy and Ix Ay
Complete lattice: every family of elements (finite or not) has a
smallest upper bound and a largest lower bound

= contains a smallest element 0 and a largest element /:

0:/\T:\/®etlz\/7':/\®

Examples of complete lattices:
m (P(E), C): complete lattice, Boolean (complemented and distributive):

Vx,IxC x Ax¢ =0and xVx¢ =1
xAN(yVz)=(xAy)V(xAz)andxV(yAz)=(xVy)A(xVz)

= (F(RY),C) _
m functions of R” in R for the ordering <:

f<gev¥xeR" f(x)<gx)

m partitions
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Semi-continuity of functions

B Wt > F(x), IV(x), ¥y € V(x), t> F(y)

(V(x) neighborhood of x in R")

mlsc. :
Vt < f(x),3V(x),Vy € V(x),t < f(y)

m a function is u.s.c. iff its sub-graph is closed

m topology on the space of u.s.c. functions = topology induced by the
hit-or-miss topology on F(R" x R)
m the set of u.s.c. functions of R” in R is a complete lattice for <:

f < g« SG(f) C SG(g)
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Algebraic dilation and erosion

Complete lattice (7, <)

Algebraic dilation:
V(X,') eT, 5(\/,‘X,') = \/,'5(X,')
Algebraic erosion:
V(xi) € T, e(Aixi) = Nie(x;)
Properties:
m §(0) =0 (in P(E),0=10)
me(l)=1(inP(E),l =E)
m ) increasing

B ¢ increasing

m in P(R"), §(X) = Uxexd({x})
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(e, 6) adjunction on (7, <):
V(x,y), 0(x) <y & x <e(y)

Properties:
m §(0)=0ande(l) =1
m (£,0) adjunction = ¢ = algebraic erosion and ¢ = algebraic dilation
m 0 increasing = algebraic dilation iff 3¢ such that (&, ) is an adjunction
= ¢ = algebraic erosion and e(x) = \/{y € T, d(y) < x}
m ¢ increasing = algebraic erosion iff 39 such that (g, ) is an adjunction
= ¢ = algebraic dilation and 6(x) = A{y € T, e(y) > x}
med > Id
m i <Id
mele=¢
mded =90
B cdcd = &b and dede = de
53 /128



Links with morphological operators

m On the lattice of the subsets of R” or Z", with inclusion:

6(X) = Uxexd({x})

m -+ invariance under translation = 3B, §(X) = D(X, B)
m Same result on the lattice of functions.

m Similar results for erosion.
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Algebraic opening and closing

Algebraic opening: ~ increasing, idempotent and anti-extensive
Algebraic closing: ¢ increasing, idempotent and extensive
Examples: v = de and ¢ = &6 with (g,0) = adjunction
Invariance domain: Inv(p) = {x € T, p(x) = x}
7 opening = (x) = V{y € Inv(v), y < x}
¢ closing = ¢(x) = A{y € Inv(p), x <y}
(i) openings = \/; i opening
(pi) closings = A; ¢; closing
~1 and 7, openings = equivalence between:
N <72
MY2="271="N
Inv(71) C Inv(72)
m 1 and s closings = equivalence between:
w2 < 1
P12 = P21 = 1
Inv(p1) C Inv(g2)
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Algebraic filter theory

Filter = increasing and idempotent operator

Examples
m openings v and \/;7; (anti-extensive filters)

m closings ¢ and A; ¢; (extensive filters)

Theorem on filter composition ¢ and 1) such that ¢ > :
B o> ot > Y Vo = oY Ao > Yo > 1)
m oY, Yo, e and Yep are filters

m Inv(eyp) = Inv(py) and Inv(pep) = Inv(e)
m Yy is the smallest filter which is largest than i V ¢

I. Bloch Mathematical Morphology 56 / 128



Example: alternate sequential filters

m openings ~; and closings ¢; such that:
I <j=75 <7 <Id< g <y

m Theorem on filter composition = m; = y;p;, nj = @iyi, fi = YiYiPi
and s; = 7y, are filters
m Alternate sequential filters:

M,' = mim;_i...Mmaymq
N,' = njnj—_1...noMm
R,' = [riri—1...nnNn

S; = sisi_1..5:81

m Property: | < j = M;M; = M;, N;N; = N;, ...
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Comparison of filters on an image with Gaussian noise

Original image Gaussian noise (variance 20)
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3 x 3 mean 7 X 7 mean

Gaussian filter with variance 0.75 Gaussian filter with variance 4.08
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Nagao filter

3 x 3 median 7 x 7 median
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Noisy image Alternate sequential filter 1

e e

Alternate sequential filter 2 Alternate sequential filter 3
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Original image Gaussian noise (variance 120)
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3 x 3 mean 7 x 7 mean

€ %

Gaussian filter with variance 0.75 Gaussian filter with variance 4.08
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Nagao filter

3 x 3 median 7 x 7 median
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Noisy image Alternate sequential filter 1

b b |

Alternate sequential filter 2 Alternate sequential filter 3
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Comparison of filters on an image with impulse noise

Original image Impulse noise (intensity 2%)
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Gaussian filter with variance 0.75 Gaussian filter with variance 4.08
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Nagao filter

X

3 x 3 median 7 x 7 median

1. Bloch




Alternate sequential filter 1
L 3

e,

Alternate sequential filter 2  Alternate sequential filter 3
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Original image Impulse noise (intensity 10%)
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3x3 mean

P

Gaussian filter with variance 0.75 Gaussian filter with variance 4.08
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Noisy image

3 x 3 median 7 x 7 median
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Alternate sequential filter 2 Alternate sequential filter 3
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Auto-dual filters

Operators which are independent of the local contrast, acting
similarly on bright and dark areas.

m Example: morphological center

Median(f (x),1(f)(x), ¥2(f)(x)]

More generally, for operators {11, 2, ...¢0n}: (Id V Aithi) A Vi
For instance 1(f) = yo(f) = (f®)g, 12 = p7(f) = (fs)°®
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Geodesic operators

Geodesic distance, conditional to X: dx
m if X is closed, there exits a geodesic arc
for any pair of points of X 7
m unique if X is simply connected /
m X convex & dx =d dy)

Geodesic ball: Bx(x,r) ={y € X | dx(x,y) <r}
Rq: Bx(x,r) C B(x,r)

Geodesic dilation:
Dx(Y,B))={xeR"|Bx(x,r)NY #0} ={xeR"| dx(x,Y) <r}
Geodesic erosion:
Ex(Y,B,) = {x € R" | Bx(x,r) € Y} = X\ Dx(X\ Y. B,)

Geodesic opening and closing: by composition
77 / 128



Properties and reconstruction

Properties:
m similar as in the Euclidean case
m Dx(Y,B,) C D(Y,B,)
= Dx(Y.B,) = N3, [(Y @ £B) N X]"
Digital case:
Dx(Y,B,) =[D(Y,B)nX]"

e o o o W o o o o
EGROR) c @@ o
. o X » X

Reconstruction:
[D(Y, B1) N X]* = DY (Y)

= connected components of X which intersect Y
78 / 128



Binary reconstruction: example
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Binary reconstruction: example
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Binary reconstruction: example
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Ultimate erosion

EU(X) — Un{E(Xa Bn) \ R[E(X’ Bn—l—l); E(X7 Bn)]}

m E(X, Bp): erosion of X by a structuring element of size n
m R[Y; Z]: connected components of Z having a non-empty
intersection with Y

= set of regional maxima of the distance function d(x, X©).
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Geodesic operators on functions

X1 g X2 and Yl g Y2 = DXl(Yla Br) g DX2(Y1, Br) g DX2(Y2, Br)

= Extension to functions, for f < g, cut by cut:

[Dg(f, Br)Ix = Dgy (A, Br)
(with £y = {x, f(x) > A})
Digital case:
Dg(f, Br) = [D(f, B1) A g]"
Eg(f,Br) = [E(f,B1) V g]
Numerical reconstruction of f (marker function) in g:
m by dilation Dg(f, Bx) = Dg°(f): opening
m by erosion Eg(f, By): closing
m opening by reconstruction: Dg°(fg) (flat areas whose contours are
some contours of the original image = compression)
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Union of openings by segments of length 20 and reconstruction
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Application to alternate sequential filters
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Application to alternate sequential filters

e Al

ASF with an hexagon (maximal size = 1) - Right: with reconstruction
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Application to alternate sequential filters

ASF with an hexagon (maximal size = 3)
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Application to alternate sequential filters

ASF with an hexagon ( maX|maI size = 5)
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Application to alternate sequential filters

ASF with an hexagon ( maX|maI size = 9)
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Application to alternate sequential filters

ASF with segments (maximal size = 1)

I. Bloch Mathematical Morphology 85 /128



Application to alternate sequential filters

E » -

ASF with segments (maximal size = 3)
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Application to alternate sequential filters

ASF with segments (maximal size = 5)
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Application to alternate sequential filters
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Regional maxima

X regional maximum of f if
Vx € X,f(x) =Xet X = CC(f))
Computation of regional maxima:
f—Dg(f—1)
h-maxima (gray level dynamics): regional maxima of
D (f — h)

= robust maxima
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Regional maxima: example
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Skeleton by influence zones

Influence zone of X; in X€ :

ZI(X;) = {x € XE | d(x, X;) < d(x, X \ Xi)}

Skeleton by influence zones:
Skiz(X) = UZI
= generalized Voronoi diagram

Properties:
m Skiz(X) C Skel(X©)
m Skiz is not necessarily connected (even if X is)
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Skeleton by influence zones: examples

£d
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Geodesic skeleton by influence zones

Y =U;Y
Geodesic influence zone of Y; conditionally to X :

le(Y,') = {X € Xde(Xa YI) < dX(X7 Y\ Y,)}

Geodesic skeleton by influence zones:
SKIZx(Y) = X\ | ZIx(Y7)

SKIZ(Y)

0| @
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Cortex segmentation (PhD of Arnaud Cachia)

Segmentation et recontassance
automatique des sillons

RivigraQl

Calcul des zones d’influences
sulcales

Dréfinition des graines gyrales
[extraction et sélection des
frontiéres)

Parcellisation en gyri

(2D et 300

I. Bloch Mathematical Morphology
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Parcellisation volumique
{diagramme de Voronoi calculé
dang le ruban cortical 3D)
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Connected filters

m Objective: make the image simpler
m Morphological filter that

m preserves contours
m is independent of the contrast
m acts on connected components

m First example: surfacic opening

a(f) = \/{fyB,(f) | B; connected and S(B;) = A}

1

I. Bloch Mathematical Morphology 94 /128






1. Bloch



Connected filters on gray level images

m For increasing operations

m Cut by cut computation
Th(f) = {x | f(x) = h}
(VAF)(x) = sup{h | x € TA(Ta(F))}

Surfacic opening  Surfacic closing

m More complex for non increasing operators
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A A
Original Image Original Image

A,B,C,D A,B,C,D

Max-Tree Max-Tree
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.5 Original image Filtered image _§
>t 51
g E
72} w)
= =
o o
o - o
3 : %
H Tree pruning g S
0 Syt g
—>' v ] P
s e
=

Tree representation Filtered tree

from (Salembier ITIP 00)
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i 3, N,
s’ * ’ 7’
(} L3

Original Area Moment of Inertia
Image Opening Opening

from (Wilkinson ISMM 00)
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Filtering depending on elongation (Meijster, 2002) :
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Entropy criterion (Salembier, 1998) :
Original Entropy Operator

mi
a

from (Salembier ITIP 98)
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Movement analysis (Salembier, 1998) :

Objecs with
translation (0,0)

Origina frame

Objects with Remaining Objects
translation (2,0)

I. Bloch Mathematical Morphology
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Compression (Salembier, 2000) :

Distortion
2500 —

T T T T
[ | |

2000 |-

L L | L L L L s [ L

0 2 4 6 8 10 12 14 Rate

in Kbits
from (Salembier ITIP 00)

1500

1000

500
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Segmentation based on mathematical morphology

m Criteria for image segmentation:
m simplicity
m regularity
m fidelity to the data

m Two morphological paradigms:

m flat zones (using connected filters)
m catchment basins and watersheds

I. Bloch Mathematical Morphology 104 / 128



Watersheds
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watersheds catchment basins
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Watersheds based on local conditions

Several solutions...
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Watersheds: definition

Steepest descent:

Desc(x) = max{%, y € V(x)}
Ramp of a path m = (xp, ...xn):

n

Tf(ﬂ') = Z d(X,'_l, X,')COSt(X,'_l, X,')
i=1

with
Desc(x) if f(x) > f(y)
Cost(x,y) = ¢ Desc(y) if f(y) > f(x)
(Desc(x) + Desc(y))/2 if f(y) = f(x)
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Topographic distance

Te(x,y) =inf{Te(m), 7 = (x0 = X, X1, ..., Xn = ¥) }
(equals 0 on a plateau)

Catchment basin associated with the regional minimum M;:
CB(M,) = {X | v 75 i Tf(X, M,') + f(M,) < Tf(X, Mj) + f(MJ)}

Watersheds:
WS(f) = [U;CB(M;)]¢
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Approach by immersion
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Construction of the watersheds

f such that f(X) S [hmina hmax]r fh = {X, f(X) < h}

Xbwin = f i

Xny1 = MinRegpi1(f) U Zlenia (Xp)
CB = Xh,..

WS(f) = X,
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Geodesic erosion in order to impose markers
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f: function on which watersheds should be applied
g: marker function (selects regional minima)
Reconstruction: Efpg(g, Bx) (only the selected minima)
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(a) Original image (from a brain MRI). (b) Morphological gradient.
(c) Watersheds. (d) Closing (size 1) of the gradient. (e) Watersheds
applied on the closing of the gradient.
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(i)
(f) Markers from regional minima. (g) Reconstruction of the gradient.
(h) Watersheds. (i) Markers inside the ventricles and on the image border.
(

j) Reconstructed gradient. (k) Watersheds providing the right contours of
the ventricles.
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Interactive marker-based segmentation

I. Bloch






Watershed as an energy minimization problem

Minimum of the energy defined as (Boomgard, 2000):

E= Z//Di(f(o,-) + T¢(x, D;))dx

D; = regional minimum
f(D;) = value of the regional minimum
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Regularization of watersheds

® using closing

m watersnakes (Boomgard, 2003): additional term controlling the length
of the contours

E= Z (/ /Di(f(D,-) + T¢(x, Dj))dx + 3 o ds)

m geometrical constraints

m viscous flooding (Vachier and Meyer)
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Watersnakes: examples (Boomgard, 2003)
Fig. &. (n) A brain image. (b) The rlief compuled liom momhological gradienl. i) The markers extracied. i) The mesull of B orginal walershed
SBgTenlalion, Shown 10F COmpariEan
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Watersnakes: examples (Boomgard, 2003)

L

Fig 7. The segmeniation resull of the walsrsraks algorttm based on energy discmtization with a (L1 30, ke v, and i} [EC1
Maota, in CoOmpanson with Ihe on Al il 5 sﬁyﬂw!:m n Flg 6, thal g Ul N quﬁ A% OIS Dud gl ﬂ"ﬂl‘f e man ]’\_Il!
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Watersnakes: examples (Boomgard, 2003)

Fig. 8. Segmeniation by (a) walershed and (b) walersrake |7 = 5 kn the bollom mow, be msull 5 shown b e objed of miemst oy
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Hierarchical watersheds
[terative filling of catchment basins:

I(MZ) e —_—

I(M1) e

grad(I)

-

| ml m2
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Hierarchical watersheds
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Hierarchical watersheds
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Hierarchical watersheds
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Hit-or-Miss Transformation (HMT)

Structuring element: T = (T, To), with TN T, =0

HMT:
X®T=EX,T)NEXCS, T)

Thinning (if O € Ty):
XoT=X\X®T

Thickening (if O € T»):

XOT=XUX®T

For T' = (T, T1):
XoT=(X"0T)¢
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Applications of HMT

end points
multiple points
convex hull

homotopic skeleton
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® And many other operations!

m Current trend: mathematical morphology associated with artificial

neural networks

m additional input

B post-processing

m non-linear convolutions

m inside the cost (loss) function to be optimized
|
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