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Résumé

La localisation de I'activité neuronale sur la surface 3D du cortex a partir de mesures
externes de potentiels électriques (EEG) et de champs magnétiques (MEG), associée a
une représentation 3D du cortex obtenue par des techniques d’imagerie telles que I'IRM,
fournit un outil important d’investigation non invasive de l'activité du cerveau et de
sa dynamique, a la fois pour des études cliniques et pour des recherches en sciences
cognitives. Cela nécessite de résoudre deux problemes différents mais non indépendants.
Le probleme direct consiste a déterminer un modele suffisamment précis des propriétés
électromagnétiques des tissus de la téte pour permettre le calcul des champs externes
créés par une source de courant connue dans le cerveau. Le probléme inverse consiste a
trouver la distribution et I'amplitude des sources qui correspondent au champ mesuré a
la surface de la téte. Afin de construire un modele de la téte pour résoudre le probleme
direct, des techniques de segmentation doivent étre mises en ceuvre pour détecter les
surfaces ou volumes des différents tissus de la téte dans des images IRM. L’obtention et la
discrétisation de ces surfaces constituent la premiere étape de la construction du modele.
A partir des volumes segmentés et d’une tétraédrisation presque réguliere développée a
IPENST en collaboration avec le LENA, le but de ce projet est de développer un algorithme
d’amélioration de ces maillages afin de les faire mieux coincider avec les surfaces extraites
de 'IRM. Ensuite, nous cherchons a adapter les maillages localement pour répondre
aux besoins de la localisation des activations. Cela concerne d’une part I'affinement du
maillage dans les régions du cerveau plus actives selon la tache cognitive étudiée, et
d’autre part la réduction du temps de calcul en gardant un maillage moins précis dans
les zones non activées.

Mots clés : maillage tétraédrique, affinement, adaptativité, éléments finis.
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Abstract

The localisation of neuronal activity on the 3D cortical surface from external mea-
surements of the electric potentials (EEG) and the magnetic fields (MEG), mapped into
a 3D representation of the cerebral cortex by means of imaging techniques can be an
important non-invasive tool for clinical studies and cognitive research into the dynamics
aspects of brain activity. Carrying out this representation requires the solution of two
separate but interrelated problems. The ”direct problem” of determining a sufficiently
accurate model of electromagnetic properties of the tissues of the head to enable the
calculation of the external fields generated by a known current source within the brain.
The second problem is the ”inverse problem” of finding the distribution and magnitude
of current sources that correspond to a measured external field. In order to derive the
model of the head for the direct problem, segmentation techniques have to be imple-
mented to detect the anatomical surfaces or volumes of the different tissues of the head
from MRI images. The discretisation of these segmented surfaces is the first step for the
definition of the model. Based on the previously segmented volumes and in the almost
regular tetrahedrisation (ART) obtained at ENST and LENA, the aim of this part of the
project is to develop an algorithm that automatically improves the mesh representation
of the surfaces and volumes generated based on the segmented volumes. Once the meshes
are properly adapted to the real surface obtained from MRI images, the next stage of
this project will be to adapt the mesh locally in order to improve the accuracy of the
computation and consequently the localisation of the activity. Local adaptation of mesh
is particularly important in the present project for two main reasons: 1) refinement of
the mesh in particular areas of the brain where more activity can be found depending
on the cognitive task to be studied and 2) the problem size and computational cost grow
very rapidly as the grid size is reduced, thus the grid should not be small particularly in
areas where less brain activity is expected.

Key words: tetrahedral mesh, refinement, coarsening, adaptive, finite element.
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Chapter 1

Introduction

The localisation of neuronal activity on the 3D cortical surface from external measure-
ments of the electric potentials (EEG) and the magnetic fields (MEG), mapped into a 3D
representation of the cerebral cortex by means of imaging techniques can be an important
non-invasive tool for clinical studies and cognitive research into the dynamics aspects of
brain activity.

Current functional brain imaging techniques such as functional magnetic resonance
(fMRI) or positron emission tomography (PET) have a good spatial resolution (a few mm)
but insufficient temporal resolution to describe the brain activity accurately. To overcome
this problem of resolution, the idea of representing the EEG and MEG information
with high temporal resolution (ms) in conjunction with anatomical information that can
be extracted from magnetic resonance imaging (MRI) techniques has been introduced
[Phillips et al., 1997].

Carrying out this representation requires the solution of two separate but interre-
lated problems: the ”direct problem” of determining a sufficiently accurate model of
the electromagnetic properties of the tissues of the head to enable the calculation of the
external fields generated by a known current source within the brain and the ”inverse
problem” of finding the distribution and magnitude of current sources that generated a
measured external field. Figure 1.1 shows in an schematic way the source localisation
general principle.

In order to solve the direct problem it is necessary to develop a specific model of
the head. The EEG direct computation requires specification of the boundaries between
the brain cerebro-spinal fluid and skull, the skull and scalp, and the scalp and air, and
the relative conductivities of each of the regions. The MEG direct solution, however,
requires only the specification of the inner skull boundary, which could be constrained
to be within the cortical surface and the inner skull [Liu et al., 1998|.

There have been many studies based on idealised geometries (like concentric spheres)
with isotropic electromagnetic properties and, more recently, models based on more re-
alistic shapes [Cuffin, 1996]. The solutions of the direct problem can be calculated for
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Figure 1.1: Source localisation principle.

isotropic properties using boundary element methods (BEM) [Mosher et al., 1999]. The
development of volumetric meshes to model the different tissues of the head with a finite
element method to calculate the electromagnetic fields have also been reported [Marin
et al., 1998]. Figure 1.2 shows an example of the different geometric models that have
been used in the literature for EEG/MEG localisation.

(a) (b) (c)

Figure 1.2: Different geometry models. (a) Concentric spherical model with analytical
solution, (b) realistic surface models for BEM and (c) realistic volume models for FEM.



In order to derive the model of the head for the direct problem, segmentation tech-
niques have to be implemented to detect the anatomical surfaces or volumes of the dif-
ferent tissues of the head from MRI images. This stage will be based mainly on existing
algorithms developed at ENST and LENA [Dokladal et al., 2001]. The discretisation of
these segmented surfaces is the first step for the definition of the model. Figure 1.3 shows
the steps followed to obtain the meshed models.

(a) (b) (c)

Figure 1.3: Steps to obtain the mesh model. (a) Anatomical information from MRI
images, (b) volume segmentation and (c) surface mesh of the segmented volumes.

Based on the work by Pescatore [2001] at ENST on almost regular tetrahedral (ART)
meshes (recursive construction of meshes and labelling according to the different tissues)
and on information acquired from anatomical MRI, the problem of mesh refinement will
be addressed. At the present, the ART surface and tetrahedral meshes obtained from
the MRI segmented surfaces do not match precisely with the tissue surfaces as seen in
MRI acquisitions, they are not sufficiently smooth. Therefore the first aim on this stage
is to refine the current mesh in order to have a better geometrical representation of the
tissue interfaces (brain, skull and scalp) extracted from MRI data. These refinements
have to be performed under topological constraints in order to preserve the topological
arrangement, and the conductivity properties of the tissues of the head. This stage is
very important for source localisation, therefore a compromise between the distance of
the surface meshes to the actual tissue surfaces as well as the shape of the tetrahedral
volumes has to be found. Achieving good properties for both surface meshes (for BEM
models) and tetrahedral meshes (for FEM models) will allow us to compare boundary
element methods with finite element methods for solving the inverse problem.

Once the meshes are properly adjusted to the surfaces obtained from MRI images,
the next stage of this project will be to adapt the mesh locally, to a specific area of
the tissues, in order to improve the accuracy of the computation and consequently the



localisation of the neurological activity. Common applications of mesh generation are,
for example, in the area of computational fluid dynamics simulations where meshes are
constructed and adapted to a specific model flow constrained to the geometry and the
flow properties. In our problem an adaptive tetrahedral mesh can be built constrained to
the geometry of the head and the properties of tissue conductivity included in the direct
model preserving the topology of specific areas of brain activity. This local adaptation
of the mesh is important for two main reasons: 1) improved resolution by reducing grid
size in regions of increased neurological activity and 2) reduced computational costs by
increasing grid size in areas of less brain activity. Figure 1.4 shows the mesh adaptation
idea in the feedback process.

Direct Problem

‘ Inverse Problem

Geometrical
Model

Mesh
Adaptation

-Hom— Error
Estimation

Figure 1.4: Mesh adaptation and feedback process.

Methods of refinement /derefinement of meshes such as bisection will be investigated
[Rivara and Levin, 1992; Plaza et al., 2000; Molinari and Ortiz, 2002]. In addition to
iterative adaptation of the mesh based upon the solution of the inverse problem itself,
information obtained from other imaging techniques such as fMRI will be used. This
local adaptive refinement will allow us to focus on the most interesting areas, where a
higher resolution is required.

Layout

In Chapter 2 we address the description of the background work on MRI segmentation
and ART generation made at ENST from which this work is based. Chapter 3 focuses in a
description of different mesh evaluation criteria to assess the quality of the current surface
and volume ART meshes; results of these evaluations are also presented. In Chapter 4 a
review of the state of the art on 3D refinement is made and a table of commercial and free
share software available at the present for 3D mesh generation and refinement is shown.
Chapter 5 discusses two main approaches of mesh refinement that we follow in order to
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achieve our goal of mesh refinement for the localisation problem. In Chapter 6 the current
progress accomplished in mesh refinement is shown, and a comparison between the two
techniques presented in Chapter 5 is done. Finally, Chapter 7 presents the conclusions
and the recommendations for future work.



Chapter 2

Background work made at ENST

2.1 MRI volume segmentation

The MRI segmentation procedure that we use to obtain the segmented volume tissues of
interest for the mesh construction were developed by Dokladal et al. [2001] (Appendix
A describes the technical steps to run the programs). The method extracts several
anatomical tissues from the head using MRI images.

The algorithm is based on a preliminary segmentation of the brain and uses a mor-
phological method to segment the brain stem and the cerebellum, cerebrospinal fluid
(CDF), grey and white matter, skull and skin. The method has an adequate and robust
representation of the shapes and it uses a very strong constraint to preserve the topology.
Robustness is achieved in this morphological approach by an intensive use of reconstruc-
tion and conditional operations as well as by reducing the number of parameters, while
the topology is preserved using homotopic transformations.

The algorithm begins by an automatic selection of markers that permits to control
the number of resulting objects. The selection of markers relies on a directed component
tree representation of a certain function (like distance function). To extract a known
number or markers it maximises a given criterion which can be based on some components
characteristics like height, area or volume as an attributes.

An homotopic deformation that combines topological and other criteria like distance
or grey levels is used. The homotopic transformations can be used in discrete spaces
thanks to the used of simples points, i.e. points that can be deleted or added without
modifying the topology. Beginning with the brain stem and the cerebellum, the algo-
rithm successively segments the structures of interest, in the order mentioned above, in
a cascade fashion.

Figure 2.1 shows the result of applying this algorithm. Figures 2.1(a) and (d) show
an axial and a sagittal view of an MRI slide, respectively. Figures 2.1 (b) and (e) show
the corresponding segmented tissues: brain stem and the cerebellum, cerebrospinal fluid
(CDF), grey and white matter, skull and skin. Finally, Figures 2.1(c) and (f) show only



those tissues that are of our interest at the moment for this project: brain, skull and
skin.

(d) (e) (f)

Figure 2.1: MRI segmentation example. (a) and (d) MRI axial and sagittal views re-
spectively. (b) and (e) segmented images with tissues marked on colours: brain stem,
cerebellum, cerebrospinal fluid, grey and white matter, skull and skin. (c) and (f) seg-
mented images showing only the tissues of interest: brain, skull and skin.

We segmented 7 different MRI volumes using this algorithm (Appendix A gives the
directories where these segmented images can be found). We find that the selection of the
mean and standard deviation of the classes sometimes fails, therefore a manual tuning is
needed. Also, knowledge of anatomy in needed since for the segmentation of brain stem
and cerebellum the user needs to select the proper MRI slide near those structures before
beginning the segmentation. Since the segmentation is in cascade, if brain stem and
cerebellum are not segmented properly the rest of the tissues are segmented erroneously.
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2.2 The ART volume and surface meshes

The initial mesh from where we will develop the mesh refinement is based on the work
made at ENST by Pescatore [2001]. Ideally, a finite element (FE) tetrahedral mesh should
consist of elements close in shape to a equilateral tetrahedron and having nearly equal
edges. Moreover, the number of elements should be compatible with the computation
cost of the forward problem of EEG and MEG. Thus, the 3D mesh generation proposed
by Pescatore [2001] relies on a recursive decomposition of an initial segmented volume
into congruent tetrahedra called almost regular tessellation of R®* (ART), in which the
resolution, and therefore the number of elements, can be controlled.
The method is based on the following idea: if a tetrahedron K is split into 8 tetrahedra
by bisecting the edges as shown in Figure 2.2, the small tetra-
P hedra should be congruent to K scaled by a factor of 1/2.
‘ The subdivision in this scheme is proved to be subdivision in-
variant [Fuchs, 1998]. Pescatore [2001] decided to chose this
r subdivision scheme since, from all the possible invariant sub-
divisions, this is the one which has the best shape quality,
which is measured as:

4]

= . Rk = QM
» PK
whereh, ., is the longest side of the tetrahedron K, pg is the
inradius of the tetrahedron K and o = /6/12 for regular
Figure 2.2: Subdivision {etrahedron.
of tetrahedron K. The mesh generation can be divided into two parts and
summarised as follows: In the first part, an initial mesh T is
built as a polyhedron of 24 subdivision invariant tetrahedra which share the same vertex,
which is called the “geometric constructor”. Each of the tetrahedron K is subdivided
into 8 tetrahedra following the scheme described above depending on the resolution de-
sired. Once the geometric constructor of an ART is achieved, in the second part of the
method a set My is constructed which represents the set of proportion of each tissue
in each tetrahedron K of a mesh 7. Finally, the tetrahedra are labelled as belonging
to a particular tissue following some topology constraints. (Appendix B describes the
technical steps to run the programs and the mesh file formats used).

Fl ol P2



Algorithm 1

Geometric constructor of an ART initialisation: Let 7" be
the polyhedron formed of 24 subdivision invariant tetrahedra K
with:

e T.Vertex the array of all vertices of T’
e T.Facet the array of all tetrahedra of T

Let Nt be the total number of tetrahedra of T’
For resolution = 1 to n (n = resolution scale)
for tetrahedron i = 1 of T to Ny (Ny = number of tetrahedra)

e Let Child. Vertex be the array of the 10 vertices of the decom-
position of the tetrahedron

e Let Child. Facet be the array of the 8 tetrahedra subdivision
invariant created from the tetrahedron 2

1. subdivide 7 in 8 subdivision invariant tetrahedra
2. insert Child. Vertex in T. Vertex

3. insert Child.Facetin T.Facet

endfor ;
endfor resolution

Where N7 of such an ART follows the low: Ny = 8" x 24. Figure 2.3 shows the
ART initialisation for n = 0 (Nr = 24), n = 1 (Np = 192) and n = 3 (Np = 1536),
respectively.

Figure 2.3: Geometrical ART constructor. (a) n =0 (Ny = 24), (b) n =1 (Ny = 192)
and (c) n =3 (Np = 1536).



The next step, after building the ART initialisation, is the computation of the tissue
composition (My) for each tetrahedron K of the whole volume mesh 7. Algorithm 2
shows the construction of the set My of T from the segmented image composed by V
different objects (in this case tissues).

Algorithm 2

Construction of the set M: Let I(oy,...,0y) be the segmented
based image with V' objects.

Let Nt be the total number of tetrahedra of T'.

Let o; be the I* segmented object of o4,...,0y.

Let M(K) be the vector of size V representing the proportion of
each object o; in the tetrahedron K.

Initialisation:

Forall K, M(T) = (01 =0,...,0y =0)

for K =1 to Np

Find the tissue composition of each tetrahedra K in Mr(K)(o;)
endfor K

After computing the tissue composition a labelling procedure is done under some
topological constraints by applying homotopic deformations on the different tissues. Ho-
motopic deformations are deformations that preserve topological properties. This notion
is usually defined as the preservation of the number of connected components and of the
number of tunnels. This leads to the notion of simple points which are the elements
(voxels, polyhedra) that can be added/removed from an object without changing its
topology. Pescatore [2001] proposed a local characterisation of simple tetrahedra. The
labelling of tetrahedra consists in, starting with a connected mesh model initialised on
the inner brain volume, a simple tetrahedra is added by taking into account the adjacency
properties of the object such that the brain labelled tetrahedra should not be connected
to a skull tetrahedra.

To label the skull, the process is repeated considering the union of brain and skull
as a single connected object. Finally, in an analog manner, to label the skin the process
considers the union of brain, skull and skin tissues as a single connected object. Figure 2.4
shows and example of the whole ART construction process.
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Chapter 3

Current surface and volumetric
mesh evaluation

After studied the work made at ENST by Pescatore [2001], we decided first to perform
an evaluation of the current surface and volume ART meshes. Because for finite element
methods the quality of the geometric approximation is of significant importance due to its
effect on the accuracy of the numerical solutions and the convergence of the computational
scheme, we consider the need to have proper tools to evaluate ART and future modified
meshes. The aim of the present chapter is to show the criteria followed for evaluation
and the results found in the evaluation of ART meshes for each of the tissues of interest.

3.1 Surface mesh evaluation criteria

A surface mesh must be an optimal piecewise planar approximation of the original surface
such that the maximal distance between the original and the approximating surface does
not exceed a given tolerance and moreover, the shape of the elements must be as optimal
as possible. The criteria use to evaluate the surface meshes of each of the tissues are
based on two main approaches: the first is related to the distance that each vertex has
with respect to the original surface, and the second is based on geometric feature analysis
of the mesh itself such as: quality of elements, planarity, smoothness and deviation [Frey
and Borouchaki, 1998|.

3.1.1 Distance map

A distance map converts a binary image to a grey scale image in which each pixel value
gives the straight-line distance from each object pixel to the nearest background pixel.
Chamfer distance transformations are an approximation of Euclidean distance and
rely on the assumption that it is possible to deduce the value of the distance at a pixel
from the value of the distance at its neighbors for regular metrics, i.e. metrics for which

12



for all p, g such that: disty(p,q) < 2, there exists an r different from p and ¢ such that
disty(p,q) = distp(p,7) + disty (1, q).

Borgefors [1984] reviewed a number of metrics in 2 and 3 dimensions. Chamfer
distance transformations are produced in two raster scans over the image, using the
masks of Figure 3.1. In the forward scan, the mask starts in the upper left corner of the
picture, moves from left to right and from top to bottom. In the backward scan, it starts
in the lower right corner, moves from right to left and from bottom to top. The local
distances, d1 and d2, in the mask pixels are added to the pixel values in the distance
map and the new value of the zero pixel is the minimum of the five sums.

£d1| 2|

JH| 42| 43 2

d“ﬂr" g 2ldl |42 = |d2 |4 | £
E-ﬂ-di-ﬂ i

_-_1- el A3 || 406

lEL A4l 42 d |d | L2

Aldi] 42 41| O 43 || 4

Figure 3.1: Chamfer masks. Left: 3 x 3 mask in 2D, right: 3 x 3 x 3 mask in 3D.

Borgefors [1986] computes the optimal values for d1 and d2 in order to minimize the
maximal difference between the chamfer metric and the Euclidean one. She extends the
chamfer masks to 5 x5 and 7 x 7. She computes the optimal values for the local distances
and evaluates several integer approximations for 3 x 3 to 7 x 7 masks. She recommends
using (3:4) and (5:7:11) approximations for 3 x 3 and 5 x 5 masks, but finds no significant
interest in using 7 x 7 masks. The chamfer (5:7:11) mask is illustrated in Figure 3.2.

(1] []
[11?57.-11]

(n] 78] 7]n]
ul [n

—

Figure 3.2: Chamfer (5:7:11) mask in 2D.
With the use of the library TIVOLI, developed at ENST

(http://www.enst.fr/externe/tsi.html), we compute the chamfer distance of the MRI
volumes with mask of 3 x 3 x 3, for each of the tissues of interest. Then we match the
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vertices of the surface mesh to the pixels of the distance map of the volume contours to
find out how far are the vertices from the real surfaces. Figure 3.3(a) shows a 2D slide
of the binary image of the brain tissue, (b) the contour and (c) the distance map.

(a) (b)

Figure 3.3: Brain tissue. (a) 2D slide of the binary brain volume, (b) the contour and
(c) the distance map.

After obtaining the distance values for each mesh tissue, statistics like mean, standard
deviation, median and maximum values were calculated.

3.1.2 Geometric features.

The criteria used for evaluating finite element meshes, proposed by Frey and Borouchaki
[1998], are exclusively based on geometric feature analysis and base on the sole discreti-
sation (no parametric or implicit surface is required). For this reason, it is needed that
all the vertices of the mesh fall as near as possible to the real surface.

Triangle shape quality:  The shape quality (); of a triangle K is given by:

Qr = apg/hy

where hy is the element diameter (the length of the longest
edge), pi is the in-radius and o = 6/1/3 is a normalisation
coefficient so that ), = 1 for an equilateral triangle. There-
fore, the shape quality ranges from 0 (for a flat element) to 1
(for an equilateral triangle) and it is suitable to discriminate
well-shaped from degenerated elements.

14



Mesh planarity: The geometric discontinuities of a surface triangulation usually
represent an abrupt change between the normal directions

V vV v at the surface from a vertex to its neighbours, as well as
pi P 'y between adjacent faces. A large change of the normal be-
P tween two adjacent vertices, where the surface is supposed

A to be continuous, indicates that the element density is not

VDI+1 Vp|+2 able to capture the local variations of the surface. The

planarity Pl, at vertex P is defined as the largest angle
between the normal vp and the normals vp, at the vertices

1
Pl, = 5 (1 + H}Di_n (vp, Upi>)

Mesh smoothness: The smoothness is a measure of the roughness of the surface at
a vertex P, the so-called degree of smoothness, and can be

1 introduced as: Sp at P is the minimum value of the edge
PP@ = 5(1 e [ <'T/113Vk,2 >) planarity Ppq of all edges P() sharing P.
SPZHEII(PPQ,PPQB) Sp:IIII__,i'IIPpQ
Vi P V.2 where the edge planarity measures the dihedral angle be-
Q, . Qs tween triangles K; and K5, which characterises the geo-

metric continuity of the surface along the edge.

Q, Q;

Mesh deviation: A variant of the planarity consists in defining the so called
deviation of the mesh edges as compared to the original

p surface. The deviation Dp is defined as the maximum angle
P, - P. P, between edge PP; and the tangent to the plane IIp:
S . PP,
Dp=1—m1n VP, T =T
P; P

All of the previous geometrical features are normalised
and range from 0 to 1, being 1 the optimum feature value.

D, = 1_H£n‘<p;’ﬁpp;>
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3.2 Volume mesh evaluation criteria

With the same philosophy as with surface meshes, volume meshes, and in this case
tetrahedral meshes, used in FEM applications need to have a good geometrical quality.
To evaluate the geometrical quality a concept of shape tetrahedral measure has to be
defined. Figure 3.4 shows some configurations of poorly shape tetrahedra, such as a
silver, cap or needle among others.

Figure 3.4: Bad shaped tetrahedra. (a) Silver, (b) cap and (c) needle.

In order to measure and characterise such differences in shape, researches in the past
have proposed various measures of shape and geometrical quality [Parthasarathy, 1993;
Dompierre et al., 1998]. Liu and Joe [1994b] defined a “tetrahedron shape measure as
a continuous function that evaluates the quality of a tetrahedron. It must be invariant
under translation, rotation, reflection and uniform scaling of the tetrahedron. It must
be maximum for the regular tetrahedron and it must be minimum other than for a
degenerate tetrahedron. There is no local maximum other than the global maximum for
a regular tetrahedron and there is no local minimum for a degenerate tetrahedron. For
the ease of comparison, it should be scaled to the interval [0, 1], being 1 for a regular
tetrahedron and 0 for a degenerate tetrahedron.”

A degenerate tetrahedron is a tetrahedron where the volume vanishes and some of
the edges do not vanish, like the silver tetrahedron. We will described some of the must
common measurements used for tetrahedron evaluation.
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Volume : Let T'(ty,t1,12,%3) be a non-degenerate tetrahedron and ¢;(z;, i, 2;) the co-
ordinates of vertex ¢;. The volume of a tetrahedron is defined as:

ZTo Yo <0
1 Yz
T2 Y2 z2
T3 Ys z3

(o)
[ S S g Y

Area : The area of a tetrahedron T is the sum of the surface areas of the triangular
facets s;.

where s; = area of the triangle (¢;,1;,).

Radius ratio: The radius ratio p of a tetrahedron 7 is defined to be p = Npi,/pout
where p;, and p,: are the inradius and circumradius of 7', respectively, and N is
the dimension of the space.

3
pin =3V/> s
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24V
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Pout =

where a, b and ¢ are the products of the lengths of opposite edges of T'.

Edge ratio: The edge ratio r of a tetrahedron 7 is defined to be the ratio between the
smallest edge over the largest edge of the tetrahedron.
T o dn il o max b

where [;; = ||t; —¢;||. This measure does not agree with the definition of shape
measure since it fails detecting some degenerated tetrahedra as the silver.

Aspect ratio: The aspect ratio of two characteristic sizes can be normalised by other
measure, but it cannot be a function of the circumsphere, of the smallest edge
and of the minimum dihedral angle because degenerate tetrahedra may have non-
null circumsphere, smallest edge or dihedral angle. There are many other aspect
ratio measures that can be used but the most frequently used and introduced by
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the GAMMA project [Frey and George, 2000] is defined by the ratio between the
inradius and the largest edge:

Q= EL
\/(_Sosl?g?;glij

Solid angle: A feasible shape measure to optimise a tetrahedron is based on tetrahe-
dron angles. Tetrahedron shape measures based on the minimum of the solid angle
Omin and the minimum of the dihedral angle ¢,,;, can be used. They are more
complex to evaluate and more costly because of inverse trigonometric functions.
The solid angle 6; at a vertex t; of the tetrahedron T'(to,?1,t,t3) is defined to be
the surface area formed by projecting each point of the face not containing ¢; to the
unit sphere centered at ¢;. The area of a unit sphere is 47, the maximum solid angle
for a positive tetrahedron is 27 in the case of a flat tetrahedron where a vertex sees
half of the space. A large solid angle near 27 for 7" implies that 7" has a small solid
angles. Solid angles are computed as:

0,,,, = a min 0;
mn OSZS3Z

—1/2
sin (6;/2) = 12V ( II ((lij + Li)? — lf-k))

JkFig<j<k<3

where o' = 6 arcsin(v/3/3) — 7 = 0.5512856 is the value of the four solid angles
for a regular tetrahedron (= 30°).

Dihedral angle: Each of the six edges of a tetrahedron is surrounded by two triangular
faces. At a given edge, the dihedral angle between the two faces is the angle between
the intersection of these faces and a plane perpendicular to the edge. For a positive
tetrahedron, the dihedral angle is bounded by zero and 7. It is equal to 7 minus
the angle between the normals of the faces. The minimum dihedral angle is a
tetrahedron a shape measure.

2 =@ min @;; =« min (7 — arccos(n;i1 - N,
Pmin 02inj<3 Dij 0§i<j§3( ( 151 1]2))

where n;5; and n;j» are the two triangular faces adjacent to the edge ¢j and a =

7w — arccos(—1/3) = 1.230959 is the value of the six dihedral angles of the regular
tetrahedron (& 70°).

Any shape measure that satisfy the definition of Liu and Joe [1994b] can be used by a

mesh optimiser. The more a mesh is optimised with a given tetrahedron shape measure,
the closer to the optimal mesh it is for any other tetrahedron shape measure. At the

18



limit, if it were possible to mesh a domain with only equilateral tetrahedra, as it is in 2D,
all mesh optimiser should converge to that mesh, whichever shape measure is used. The
problem is that the optimal mesh does not exist in 3D. It is impossible to fit the space
with regular tetrahedra, especially when we have complex structures like the ones we are
working with. So the converge state is unknown and depends slightly of the tetrahedron
shape measure used. For our ART evaluations we used the volume, aspect ratio and
dihedral angles.

3.3 Evaluation of ART meshes

3.3.1 ART surface meshes

Since it is noticeable that ART surface mesh vertices are not on the real volume surface
and the geometrical features presented in subsection 3.1.2 are based on meshes which
vertices are almost on the surface, we decided to generate a brain surface mesh reference
using the marching cube algorithm [Lorensen and Cline, 1987], from where we are sure
vertices lie on the real surface within a very small discretisation error. Figure 3.5 left:
shows a brain surface mesh generated with the marching cube algorithm, and right: the
same mesh where only vertices and edges are shown.

Figure 3.5: Surface of the brain volume. Left: Marching cube surface mesh, right: same
where only vertices and edges are shown.

Figure 3.6 shows an example of ART surface meshes for n = 4. From left to right

we have brain, skull and skin mesh tissues. Table 3.1 shows the values of the different
parameter criteria described in sections 3.1.1 and 3.1.2. The first row of the table shows
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the reference mesh values. The description of how to execute the programs to obtain
these evaluations are shown in Appendix C.

Figure 3.6: ART surface meshes. Left: brain surface mesh, middle: skull surface mesh,
and right: skin surface mesh.

Surface evaluation parameters. The first column shows the mesh type.
The first row contains the reference mesh evaluation values. The rest of
the rows contain brain, skull and skin mesh values, respectively. Distance
is given in pixels, # Elem. refers to number of triangles per mesh. The
other parameters are dimensionless.

Mesh | Distance Planarity | Deviation | Smooth. Quality | # Elem.
Mean (STD) | min (mean) | min (mean) | min (mean) | min (mean)
Refe. 1.27 (0.47) | 0.88 (0.97) | 0.79 (0.97) | 0.89 (0.98) | 0.24 (0.79) 9580
Brain | 4.79 (3.75) | 0.53 (0.62) | 0.59 (0.86) | 0.25 (0.36) | 0.89 (0.89) | 1704
Skull | 14.44 (12.31) | 0.45 (0.49) | 0.59 (0.96) | 0.25 (0.38) | 0.89 (0.89) | 29608
Skin | 22.20 (19.54) | 0.44 (0.52) | 0.59 (0.94) | 0.25 (0.35) | 0.89 (0.89) | 39452
Table 3.1:

Table 3.1 shows a mean distance value for the reference brain mesh of 1.27 + 0.47
in comparison with the ART brain mesh with 4.79 4+ 3.75 pixels which shows a larger
mean value and specially a larger standard deviation than the reference mesh. The
other distance values cannot be compared with the reference since they are not from the
same tissue. Mean values of the rest of the geometrical features, planarity, deviation
and smoothness are, for the reference mesh as expected, near to 1 since marching cube
algorithm generates a good approximation of the surface. On the contrary, the shape
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quality mean value, for the same mesh, is lower (0.79) compared with those of all the
ART meshes (0.89) which have a high quality since they are almost regular triangles.

There are two important aspects to notice: 1) although the distance values of skull
and skin meshes can not be compared with the reference mesh mean value and standard
deviation the former increase considerably compared with the ART brain mesh distance,
and 2) the number of elements show in the last column of Table 3.1 increase as well
dramatically from 1704 triangles for brain mesh to 39,452 triangles for skin mesh.

We cannot make any comment regarding the features of planarity, deviation and
smoothness for ART meshes since these measures are defined only for meshes having
vertices which lie, with a very small error, on the real surface.

Figure 3.7 shows the ART surfaces where only vertices and edges are shown. It is
clear from this Figure, that only brain surface mesh is correctly extracted. Skull and
skin surface meshes contain many vertices and edges inside which means that they do
not constitute a representation of the real surface of the tissues. Therefore, we conclude
that, ART surface meshes are not correctly extracted.

Figure 3.7: ART surface meshes with only vertices and edges shown. Left: brain surface
mesh, middle: skull surface mesh and right: skin surface mesh.

3.3.2 ART volume meshes

In order to evaluate the ART volume meshes we calculated parameters such as volume,
aspect ratio and dihedral angles, as described in section 3.2. Figure 3.8 shows an ex-
ample of the ART volume meshes, form left to right: brain, skull, skin meshes and the
geometrical constructor for (n = 4).

Since ART volume meshes are almost regular and generated from the same geomet-
rical constructor all values of volume and range of shape quality and dihedral angles
were the same. Volume values were V' = 97.42, whereas ranges of aspect ratio were
1.17 < @ < 1.47 and dihedral angle were 47.25° < ¢ < 106.32°. Figure 3.9(a) shows
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Figure 3.8: ART volume meshes. From left to right: brain, skull, skin meshes and the

geometrical constructor (n = 4).

the distribution of dihedral angles and (b) the distribution of aspect ratio for all tissues
(Appendix C shows the description of how to obtain these evaluations).

Distributions of Figure 3.9(a) have the same shape (and same range), they only vary
in number of elements. All distributions have two important modes which are about
50° and 70° (being = 70° for regular tetrahedron). All distributions of @ have a very
small standard deviation and fall into the same bar of values as shown in Figure 3.9(b)
(being @ = 1 for regular tetrahedron). These results are as expected, since we know

ART meshes are almost regular.
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Figure 3.9: ART volume evaluation. (a) Dihedral angles and (b) aspect-ratio distribu-
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One problem found was in terms of the number of tetrahedra of all tissues together
and the number of tetrahedra of the geometrical constructor. Pescatore [2001] concluded
that the optimum number of tetrahedra for an ART mesh was given for n = 4 (98,304
tetrahedra) since the number of tetrahedra in the mesh is related with the resolution
and with numerical computation (in the case of this particular constructor), therefore
increasing the number of tetrahedra and resolution to n = 5 was computational pro-
hibitive. As can be seen from distributions in Figure 3.9(a) the number of tetrahedra per
tissue varies being 9,835, 5,143 and 11,647 tetrahedra for brain, skull and skin meshes,
respectively. These values make a total number of 26,625 tetrahedra, from 98,304 of the
constructor, this means that the ~ 73% of the tetrahedra in the geometrical constructor
are background. Figure 3.10(a) shows the geometrical constructor split into two with the
hollow part where the tissues used to be. Figure 3.10(b) shows a zoom of the volume
meshes of interest.

¢
i
1

L

(a)

Figure 3.10: ART volume meshes.(a) Background and (b) a zoom of the head tissues.

3.4 Summary

We found that the surface ART meshes have a high quality shape since they are ex-
tracted from almost regular tetrahedra but surfaces do not describe properly the tissues
of interest. Chamfer distance in ART brain mesh showed a mean distance of 4.79 pixels
with a high standard deviation of 3.75 pixels. This measurement in the other two tissues
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does not have sense since surfaces were not properly extracted. Although the rest of the
geometrical parameters described in section 3.1.2 cannot be applied to ART meshes, since
vertices are not on the surface, these constitute useful tools for further surface analysis
after the mesh refinement.

In volumetric ART meshes, we also found a very high shape quality and well-shaped
dihedral angle distribution. Apart of the noticeable disproportion in number of tetrahe-
dra, between tissues and background, it can be seen from Figure 3.10(a) that the tissues
are not properly centered respect with to the geometrical constructor, this makes difficult
the setting of the scale input parameter when the meshes are generated (see Appendix A
for detail on how to run the ART mesh programs), therefore it is not possible to use this
background in a effective way. This can be also related with the long time consuming of
the process (about 45 min for n = 4, only for the homotopic labelling), since we suppose
that the homotopic labelling runs over the whole geometrical constructor looking for
head tissues. Since most of the tetrahedra are background, the program is processing a
large part of the geometrical constructor which does not contain tissue, this is a misuse
of processing time.
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Chapter 4

State of the art on 3D mesh
refinement

Mesh refinement is, generally, a technique used to improve on the one hand the geometri-
cal mesh approximation when a worth visualisation is important, and on the other hand,
the local mesh refinement which is critical to improve the efficiency to approximate the
solution of partial differential equations in many modelling and simulation applications.
Adaptivity of the mesh is particularly important in three dimensional modelling, such as
MEG/EEG localisation, since the mesh size and computational cost grow very rapidly
when a uniform refinement is used.

There are two main processes that undergo on local adaptive refinement: the refine-
ment of a subset of elements based generally, in local error indicators, and the consistent
transitions between refined and unrefined elements, the so called mesh conformity. In
this section we will review the main algorithms that have been used on refinement in two
and three dimensions, based on triangular and tetrahedral elements respectively.

In two dimensions, Bank and Sherman [1979] refine locally by subdividing certain
triangles into four similar sub-triangles by connecting the mid-points of the sides of the
"parent” triangle. The conformity of the mesh is ensured by approximate subdivision
of adjacent elements. Some schemes are based on edge bisection, for example, the 4-T
algorithm of Rivara [1987]: first the longest edge is bisected, and the mid-edge point is
connected to the opposite vertex, and then the newly formed vertex is used to subdivide
the initial triangle in four. In this algorithm, the angles of the triangles in a resulting
locally refined grid are uniformly bounded away from 0 and 7. Additional refinement
of adjacent triangles is again necessary to ensure the conformity of the mesh, but this
refinement is also made based on bisecting the longest edge in the Rivara algorithms.

Another approach of Rivara’s algorithm [Rivara and Levin, 1992] is to bisect the
triangle by the longest side and bisect as well as those triangles that do not conform until
it converges, using a longest edge propagation path (LEPP), the difference between the
above mentioned method (of the same author) and this, is that triangles are subdivided
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in two instead of four, only those triangles that need to conform the mesh are bisected
again (for more detail see subsection 5.1.1).

Another related method is the "newest vertex bisection” introduced by Mitchell
[1992]. The triangle edge to be bisected is identified without any computation. Only four
similarity classes of triangles and only eight distinct angles are created by this method.
Hence the important condition of being bounded away from 0 and 7 is again satisfied.
Additional refinement is also necessary in this algorithm to ensure the conformity of the
mesh. The newest bisection is equivalent to the 4-T Rivara algorithm in the case in which
the bisected edge coincides with the longest-edge.

There are other schemes which introduce different transition elements to solve the
problem of mesh conformity. Other techniques use constraints on the approximation
rather than subdividing adjacent neighbour elements [Carey, 1976]. Ruppert [1995]’s
algorithm produces Delaunay meshes with no small angles, using relatively few triangles
and allowing the density of triangles to vary quickly over short distances. The basic idea
of the algorithm is to maintain a Delaunay triangulation, making local improvements in
order to remove the skinny triangles. Each improvement involve adding a new vertex to
the triangulation and retriangulating.

After Ruppers’s work, Shewchuk [1996a] introduce his algorithm (which implemen-
tation is called Triangle, http://www-2.cs.cmu.edu/~quake/triangle.html) for 2D
mesh generation and construction of Delaunay triangulations, constrained Delaunay tri-
angulations and Voronoi diagrams. His algorithm guarantees quality meshes having no
small angles and are generated using Ruppert’s Delaunay refinement algorithm. The fea-
tures of the implementation of the algorithm include user-specified constraints on angles
and triangle areas, user-specified holes and concavities, and the economical use of exact
arithmetic to improve robustness (see subsection 5.2.1).

In three dimensions there are two main approaches for subdividing a single tetra-
hedron: octasection and bisection. Octasection methods simultaneously create eight
descendants for each tetrahedron. Bey [1995] first connects the edges of each triangle
face as in the two dimensional Bank refinement, then cuts off four sub-tetrahedra at the
corners which are similar to the original one. The Bey’s algorithm cuts the interior octa-
hedron into four more sub-tetrahedra. Since this algorithm considers only the number of
nodes at the mid-points of the edges, not the relative position of these nodes, for partial
refinement of a tetrahedron there are 25 = 64 possibilities. To handle the transition for
mesh conformity, he considers four patterns that cover 25 of the 64 possibilities. The
remaining 39 possibilities are refined to 8 sub-tetrahedra.

Methods based on bisection can also be devised easily to subdivide each tetrahedron
in eight, but the primary stage consists in bisecting the tetrahedron in two. Bénsch [1991]
presents an algorithm based on the selection of an edge as a ”global refinement edge”
in each tetrahedron, but imposes small perturbations of the coordinates of the nodes to
avoid incompatibilities. The algorithm presented by Rivara and Levin [1992] is based on
the longest edge bisection also in 3D. Mathematical proofs of the non-degeneracy of the
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grids created by this scheme have not yet been developed in 3D, although experiments
suggested this property holds. Liu and Joe [1994a] and Liu and Joe [1995] present an
algorithm (called QLRB) similar to that of Bénsch. They classify the tetrahedra in four
types and set up the types of edges depending on the type of tetrahedron. The bisected
edges are chosen without computation. This order depends on the assignation of types of
the new edges. In this sense it can be said that the QLRB algorithm is the generalisation
to 3D of the Mitchell algorithm. In addition, a shape measure is introduced. The number
of similarity classes is proved to be bounded and therefore the meshes cannot degenerate.

Several similar studies are reported in the literature. For instance, a recursive ap-
proach is proposed by Kossaczky [1994]. This algorithm imposes certain restrictions
and preprocessing in the initial mesh . The 3D algorithm is equivalent to that given
in [Bansch, 1991]. Maubach [1995] developed an algorithm for n-simplicial grids gener-
ated by reflection. Although the algorithm is valid in any dimension and the number
of similarity classes is bounded, it cannot be applied for a general tetrahedral grid. An
additional closure refinement is needed to avoid incompatibilities. Mukherjee [1996] has
presented an algorithm equivalent to [Bénsch, 1991] and [Liu and Joe, 1994a], and proves
the equivalence with [Maubach, 1995].

The algorithm presented by Plaza et al. [2000] is also based on bisection. Although
it shows similar behaviour to those cited above (Bénsch [1991]; Kossaczky [1994]; Liu
and Joe [1994a, 1995]; Mukherjee [1996]) the point of view is different since the three
dimensional approach is now based on the two dimensional one applied to the skeleton of
the triangulation. The two dimensional version is equivalent to the 4-T Rivara algorithm,
and the three dimensional one is the generalisation to the three dimensions of the 4-T
algorithm. The algorithm can be applied to any valid initial mesh without any restrictions
on the shape of the tetrahedra, since it is based on a previous classification of the edges
based on their length. Moreover, because of the underlying spatial recursion approach,
these ideas can be extended to obtain local refinement algorithms in higher dimensions.

Recently, Molinari and Ortiz [2002] develop a 3D mesh refinement strategy based on
Rivara’s longest-edge propagation path (LEPP) by bisection algorithm. The algorithm
targets for bisection an entire set of elements defined by a longest-edge incidence crite-
rion. It guarantees that the aspect ratio of elements remains above a certain lower bound
regardless of the number of applications of the algorithm. Although it is not theoreti-
cally prove, in practice has shown that it converges after a relatively small number of
refinements (see subsection 5.1.2). In addition Molinari and Ortiz [2002] also develop
a strategy for mesh coarsening, or unrefinement, which is based on the elimination of
elements by edge-collapse. The authors use local retriangulation tools to optimise the
quality of the mesh and it is also used to eliminate bad elements such as silvers. This
algorithm is based on a parallel implementation made by De Cougny and Shephard [1999]
(see subsection 5.1.3).

Finally, following the Delaunay constrained refinement strategy describe above for
2D [Shewchuk, 1996a], Shewchuk [1998] develop the extension of this strategy in 3D by
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maintaining a Delaunay or constrained Delaunay tetrahedrisation, which is refined by
inserting carefully placed vertices until the mesh meets constraints on tetrahedra quality
and size (volume). The algorithm generates meshes whose tetrahedra have circumradius-
to-shortest-edge ratios no greater than the bound B = 2. Upon relaxing B to be greater
than two, one can also guarantee good grading (see section 5.2.2).

In the present work we will follow and test the two main different strategies that have
been applied in practice for modelling problems, in order to compare them and establish
which of this two is more suitable to our particular problem of MEG/EEG localisation.
These are: the subdivision refinement of ART meshes based on Rivara bisection algo-
rithm ([Rivara and Levin, 1992; Molinari, 2000]) and the Delaunay constraint refinement
strategy of Shewchuk [1998]. These topics will be discuss in more detail in Chapter 5.

4.1 Software available for mesh generation and re-
finement

During our research we did find a large scientific community dedicated to mesh generation
problems and we also found a large amount of software develop for particular applica-
tions. Most of the modelling applications are in areas of computer flow dynamics (CDF),
thermal, structural and environmental modellings, where geometries are generally more
simples than head tissues.

We extract from the information compiled at
http://www.andrew.cmu.edu/user/sowen/software/tetrahedra.html about software
availability, particularly in the area of 3D tetrahedral mesh generation and refinement, a
list of commercial and public domain software. Table 4.1 contains the commercial soft-
ware characteristics, and Table 4.2 contains the features of free public domain software.
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H Name Company ‘ Application ‘ Algorithm ‘ Platform H
ANSYS ANSYS, Inc. CFD,Thermal Delaunay, Adv. Front | UNIX/Wind.
Design Space ANSYS, Inc. Structural, Thermal Delaunay Windows
Gambit Fluent Inc. CFD Delaunay. Adv. Front | UNIX/Wind.
GMS EMRC, BYU Environmental Delaunay UNIX/Wind.
HOMARD Electricité de France Structural, CFD Delaunay UNIX/Wind.
ICEM CFD ICEM CFD Structural, CFD Octree UNIX/Wind.
MESH ISE Zurich Semiconductors Siml. Octree UNIX/Wind.
TGrid Fluent Inc. CFD Delaunay, Adv. Front | UNIX/Wind.
TrueGrid XYZ Sci. Apps., Inc. CFD, Thermal Delaunay UNIX/Wind.

Table 4.1:

Commercial software for tetrahedral mesh generation and refinement.
Information extracted from:
http://www.andrew.cmu.edu/user/sowen/software/tetrahedra.html

| Name Company | Functionality | Algorithm | Platform | Source Code |
COG WIAS Berlin Restricted Delaunay UNIX Yes
Geompack90 ZCS, Inc. Restricted Delaunay | UNIX/Wind. Yes
GMSH E.P.Mont.U.Li. Non-Rest. Delaunay | UNIX/Wind. Yes
VGRID NASA Non-Rest. Advan.Front UNIX No
Tetgen Berlios Non-Rest. Delaunay UNIX Yes
Table 4.2:

Public software for tetrahedral mesh generation and refinement.
Information extracted from:
http://www.andrew.cmu.edu/user/sowen/software/tetrahedra.html
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Chapter 5

Refinement approaches studied in
this work

Mesh refinement is an iterative process to determine where to place the mesh points and
how to connect them. Popular refinement methods that have been implemented and used
in numerical modelling include Delaunay refinement and the edge bisection methods, as
it has been reviewed in last Chapter.

Delaunay refinement and edge bisection are similar in spirit. They need to begin
with a triangular mesh for the input domain. Delaunay refinement uses normally a
Delaunay triangulation as an input, and bisection refinement could use Delaunay or other
well-shaped triangulation like the ART meshes. Given a shape measure condition (e.g.
minimising the maximum angles or aspect ratio, or maximising the minimum angles),
they proceed iteratively: search the element with the worst condition (or an estimation
error below a tolerance) and add a local point to improve its condition. In 2D, Delaunay
adds the circumcenter of the worst triangle, whereas bisection adds a point to the middle
of the longest side. They have their own rules for finding the regions that are close
to the boundary. Delaunay refinement generally demonstrates a better ratio and size
quality, as well as better visual effect. Edge bisection uses a more local procedure for
point placement and re-triangulation than Delaunay refinement. Moreover, 2D and 3D
cases are slightly different since the extension to 3D methods are not trivial, as we will
discuss in the next two sections.

However, since mesh adaptation is inextricably tied to the mechanics and physics of
the problem, the study of mesh construction and mesh adaptation cannot be viewed only
from a purely geometrical point of view, although the geometrical evaluation presented
in Chapter 3 is the first step to achieve. In this Chapter we will described the main
idea of each of the approaches and in the next Chapter we will deal with the geometrical
comparisons.
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5.1 Bisection refinement on 2D and 3D meshes

5.1.1 Rivara’s bisection on 2D meshes

Definition 1. The longest edge bisection of a triangle ¢ is the partition of the triangle
by the mid-point of its longest edge and the opposite vertex. The neighbour of ¢ is the
triangle ¢* which shares with ¢ the longest edge of t. A point will be non-conforming if
it is an interior point of the side of one triangle and a common vertex of the two other
triangles (points 1 and 2 Figure 5.1(c))[Rivara and Levin, 1992].

Forward longest edge propagation path (LEPP):

Definition 2. For any triangle ¢, of any conforming triangulation 7", the longest-edge
propagation path of ¢, will be the ordered list of all the triangles g, t1,%o,...,th_1, tn,
such that t; is the neighbour triangle of ¢;_;, by the longest side of ¢;_;, fori =1,2,...,n.

Proposition. For any unstructured, conforming, non-degenerate triangulation of
any bounded 2-dimensional geometry 2, the following properties hold:

1. The longest-edge propagation path tg,%4,...,t, of any triangle ¢, is always finite.
2. The triangles tg,t1, ..., 1, have strictly increasing longest side (if n > 1).

3. For the triangle t,, of the longest-edge propagation path of any triangle ¢, it holds
that either:

(a) t, has its longest side along the boundary, and this is greater than the longest
side of ¢,,_1, or

(b) t, and t,_; share the same common longest side.

Definition 3. We shall say that two adjacent triangles ¢, ¢t* are a pair of terminal
triangles if they share their respective (common) longest side.

Definition 4. We shall say that ¢ is a terminal boundary triangle if its longest side
is a segment of the boundary of €.

To illustrate the idea in terms of refinement propagation, consider the triangulation
of Figure 5.1(a) where ¢, is the triangle to be refined. We refined ¢, and its neighbour
and so on iteratively until the last two triangles share the same longest side. In this way
the refinement propagation stops (Figure 5.1(c)). The same idea needs to be applied in
order to conform the set of non-conforming points generated, in the inverse of the order
in which they were created. Figure 5.1(d) shows the final refined triangulation.

Let be T" a conforming triangulation, the algorithm can be schematically described
as follows:

Longest-edge-bisection (T,t)

Perform a longest-edge bisection of t
Let P be the point generated
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(a) (b) (c) (d)

Figure 5.1: Rivara’s 2D forward propagation path bisection method (LEPP).

While P is non-conforming then do
Find the neighbour t* of t (by the side containing P)
Longest-edge-bisection (T,t)

Backward Longest edge propagation path:

Rivara [1996] introduced an improved of the latter algorithm and called it backward
longest-edge refinement, which makes also use of the LEPP concept. The new algorithm
produces the same triangulation without generating intermediate non-conforming points
in the mesh which makes it easy to implement.

Backward-longest-edge-bisection (T,t)
While t remains without being bisected do
Find the LEPP(t)
If t*, the last triangle of the LEPP(t),
is terminal boundary triangle, bisect tx*
Else bisect the (last) pair of terminal triangles of the LEPP(t).

For illustration Figure 5.2 shows the refinement of triangle ¢, over the initial trian-
gulation in Figure 5.2(a) (with associated LEPP(ty) = to,t1,t2). The triangulations
(b) and (c) illustrate the first two steps of the Backward-longest-edge-bisection proce-
dure. Triangulation (d) is the final mesh obtained. Note that the new vertices have been
enumerated in the order they were created.

The repetitive use of the Backward-longest-edge-bisection procedure in order to refine
to and its descendants (triangles nested in ) tends to produce local quasi-equilateral
triangulations.

Remarks [Rivara and Inostroza, 1997]:

1. Both algorithms are equivalent in the sense that they produce the same refined
mesh at the end.
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(a) (b) () (d)

Figure 5.2: Rivara’s 2D backward propagation path bisection method.

2. Both algorithms use the concept of LEPP introduced.

3. For any conforming triangulation 7', the repetitive use of the Backward-longest-
edge-bisection procedure in order to refine ¢, and its descendants (triangles nested
in tg) covers, in a monotonically increasing form, the area of ¢, with quasi-equilateral
triangles.

4. The smallest angle «; of any triangle ¢ obtained through this process, satisfies that
ay > op/2, where g is the smallest angle of .

5. The algorithm guarantees the construction of good quality irregular and nested
triangulations, with linear time complexity, provided that an initial good quality
triangulation is used.

6. These ideas can be extended to 3D (see subsection 5.1.2).

The appealing properties of this bisection method is that it guarantees that the aspect
ratio of the elements remains above certain lower bound regardless of the number of
applications of the algorithm. And it also guarantees termination after a finite, typically
small, number of element subdivisions.

5.1.2 Extension of Rivara’s bisection on 3D meshes

Rivara and Levin [1992] also proposed the extension of the LEPP to 3D. Let the tetrahe-
dron K be the target for bisection. The tetrahedron Ko = {V3, V4, Vi, Vo } (Figure 5.3(a)),
is bisected (by its longest edge) by a plane determined by the mid-point V, of the longest
edge e = {V,,V4} in Figure 5.3(a), and the two vertices which are opposite to the bi-
sected edge (V7 and Vj in Figure 5.3(a)). Accordingly, each element K* sharing the
non-conforming edge e is bisected in the same way (by its own longest edge) generating
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a set of new non-conforming edges (see Figure 5.3(b)). The elements sharing these non-
conforming edges (in a ring around them) are in turn bisected in the same way, and so
on, until propagation stops.

Figure 5.3: Rivara’s 3D bisection method.

The non-conforming edges are treated in the same way as described before, in the
reverse order in which they were created in order to ensure the management of inter-
mediate non-conforming edges. Thus, the 3D algorithm to refine tetrahedron K over a
conforming tetrahedral mesh can be described as follow:

Tetrahedron refinement (K,T)
Perform a generalised bisection of K
(Let P be the point generated)
While P is non-conforming then do
Find the neighbour set N_K of the tetrahedron K
For each Kx in N_T do
Tetrahedron refinement (K*,T)

The neighbour set of K is the polyhedron formed by the union of all the tetrahedra
that share with K its longest edge. Geometrically, the conforming process can be seen as
the refinement of a set of polyhedral neighbour sets, where each has its axis longer than
the preceding one in the recursion. This property ensures that the algorithm terminates
with a conforming mesh in a finite number of steps. However, is has not been shown
mathematically that the algorithm ensures that the tetrahedron constructed does not
degenerate when the process proceeds to infinity. Rivara and Levin [1992] have reported
numerical results that show that the algorithm is a reliable tool from a practical point
of view.
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The generation of the propagation path in 3D is not trivial. Molinari [2000] has
suggested an algorithm to represent the propagation path in 3D using graphs which
he called Longest-edge propagation graph (LEPG). Each vertex in the directed graph
represents an element of the mesh. The vertices are linked by directed edges which are
the longest edges of the elements from which they emanate. An example is shown in
Figure 5.4 were the graph starts from tetrahedron K; which is adjacent by its longest
edge e; to five other tetrahedra: K, K3, K4, K5, and Kj.

Figure 5.4: Longest-edge propagation graph (LEPG).

From this example we can see that K5 has an edge e, which is larger than e;. This
edge is adjacent to two other tetrahedra, K7 and Kg. The longest edge of K7 is also e
and thus is a terminal vertex of the graph. Therefore, the edge joining the vertices Ko
and K7 has two directions. K7 is our first candidate for subdivision. Kjg, on the other
hand, has a larger edge e3 which brings the algorithm to the terminal tetrahedron Kj.
In the case of the vertex Ko, it has an edge e, shorter then e, but larger than e;, thus
the element Ky which is adjacent to K5 along e, is a new member of the LEPG. K4 has
another longest edge es, which belongs to K7, a vertex that was previously encountered
in the graph.

Suppose that the tetrahedron K; is the target to be refined. Then the LEPG is
generated recursively by addition of new tetrahedra at the end of the path in accordance
with the following rules:

1. Initialisation: LEPG = {K,}.
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2. Let LEPG = {K;, Ky, ..., K;.1} after i iterations of the algorithm. Then the al-
gorithm terminates if K; ;1 is a terminal tetrahedron, i.e., if the following condition
is satisfied:

e The longest edge of K;, is shared with K.

3. If LEPG = {K;,K,...,K;;1} and K, is not a terminal tetrahedron, then the
new path is LEPG = {K;,Ks,..., K1, K;12}, where K;.o is the tetrahedron
incident to K;; along its longest edge.

4. If LEPG = {K;,K,,...,K;11} and K;,1 is a terminal tetrahedron, then K; i is
bisected along its longest edge and the new path is LEPG = {K;, Ky, ..., K;}.
This step results in the addition of new nodes to the mesh.

5. The previous rules are repeated until K is bisected.

Figure 5.5 describes the order in which the vertices of Figure 5.4 are visited. Each
line corresponds to a bisection of a tetrahedron.

Ky =K1 Kg - K5

-
Kl o= Kg == %
-_—
K1 = K4 = <
B o
K1 = K1 Ko = K5
-
K = k2 = Ko
e T
K1 K35
B
K| ——=K§
_.
Ky —=K3~
.~ —
K = Ks =Kun = K12
_
K = K3 = K11
Ky ——=K5
Ky ——=K§
b, T

Figure 5.5: Bisection of tetrahedra, following the LEPG.
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5.1.3 Derefinement or coarsening on 3D meshes

Coarsening is often useful, particularly in time-dependent computations, to unrefined
regions of the mesh that were refined in previous steps of the computation, it also can
be used to eliminate bad elements like silver tetrahedra. For the particular problem of
MEG/EEG localisation can be used to eliminate tetrahedra were there is a low neuronal
activity depending on the cognitive task being tested.

Some schemes that use subdivision patterns or bisection for refinement can also
coarsen by reversing the refinement process. However, reversing the refinement can-
not be done arbitrarily since some triangles or tetrahedra merged cannot still guarantee
to form a conforming triangulation. Edge collapsing, which consists in “pulling” one
end vertex to the other, along with the connected regions, can be used for coarsening
purposes or with the idea of eliminating bad shape elements.

Molinari [2000], based on the work of De Cougny and Shephard [1999], proposed an
edge collapsing algorithm to coarsen and/or eliminate bad tetrahedron from an already
bisected refined mesh. Figure 5.6(a) illustrates the collapse operation on a simple three
dimensional mesh. The initial mesh contains seven nodes and five tetrahedra: ¢; =
(Vs Va, Vi, Vab, ty = {V3, Vi, Vi, Vo, ts = {V4, Vi, V3, Vb, ta = {V4, Vi, Vi, Va} and t5 =
{Vay Vi, Va, Vi }.

) V2
» v3 V3
4 Vi
V V1
Vs ]

(a) (b)

Figure 5.6: Edge collapse operation in 3D.

The collapse of edge {V,, V,} onto the mid-point V, eliminates the tetrahedra t4 and
t5 and results in a coarser mesh consisting of six nodes and three tetrahedra ¢}, ¢}, and ¢,
(Figure 5.6(b)). These tetrahedra are deformed from ¢, t; and ¢3 by the dragging of V,
and V, towards the mid-point V.. Particular care has to be taken for edges that belong
to the boundaries or material interfaces, for example:
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e the two vertices are inside the domain,

e one vertex is inside the domain, the other is on the boundary,

e the two vertices are on the boundary, but they are no corner vertices,

e the two vertices are on the boundary and one is a corner vertex, etc.

In three dimensions the number of possibilities is larger and are summarised in Ta-

ble 5.1.
Edge Vi Vs Operation
interior interior interior collapse to mid-point
interior boundary interior collapse to V}
interior boundary boundary no collapse

boundary face
boundary face
boundary face
global edge
global edge
global edge

interior face
boundary face
boundary face
interior edge
boundary edge
boundary edge

interior face
interior face
boundary face
interior edge
interior edge
boundary edge

collapse to mid-point
collapse to V;
no collapse
collapse to mid-point
collapse to V;
no collapse

Table 5.1: Possible cases for edge collapse in 3D [Molinari, 2000].

A boundary edge can be also identified as a global edge when the dihedral angle
opposite to (subtended by) the boundary at the edge is under a given tolerance (like in a
sharp edge) or over a given tolerance (like in a groove). A boundary vertex is identified
as a global vertex if it is at the intersection of two global edges.

The operations in the table preserve the topology of the domain and sharp geometrical
features of the boundary such as global edges and vertices, which depend on the choice
of tolerance.

Molinari [2000] reported that some times the edge collapse operation worsens the
aspect ratio of the elements, to avoid this he introduced and additional criterion based
on the quality measure that Rivara and Levin [1992] used: minimum of the solid angles
at its four vertices, which ranges from 0°, for silver, to 45° for a regular tetrahedron.
Therefore, the edge collapse is performed if one or more tetrahedra incident on an edge
are silvers, or if all the following conditions are met simultaneously:

1. The edge error indicator falls below the tolerance.
2. Edge collapse is geometrically possible (Table 5.1).

3. The average quality of the product tetrahedra exceeds the average quality of the
original tetrahedra.

38



4. The quality of the worst product tetrahedra exceeds the quality of the worst original
tetrahedron.

5. The total volume of the product tetrahedra is close to the total volume of the
original tetrahedra.

5.2 Delaunay 3D mesh generation and refinement

One of the most popular techniques for point set and element generation for FEM appli-
cations are the Delaunay triangulation and the Delaunay refinement. In order to apply
this method a definition of a piecewise linear system (PLS) in 2D, or a triangular surface
in 3D is needed. In order to generate a polygonal based representation of the human
cortical surfaces it is possible to apply methods based on surface reconstruction from
contours, like the program NUAGES written by Geiger [1993], methods based on voxel
reconstruction like the marching cube algorithm [Lorensen and Cline, 1987], or methods
based on cloud points like Power Crust suggested by Amenta et al. [2001]. Surface recon-
struction will not be discuss further here except to say that it has been extensively studied
and some methods are a combinations of the mentioned above. Unfortunately the quality
of the generated surface influences heavily in the quality of the 3D tetrahedrisation, when
Delaunay tetrahedrisation methods are used.

5.2.1 Delaunay refinement in 2D

The idea can be summarised in adding Steiner points into the domain of the initial
triangulation and an improved triangulation is generated. This procedure is repeated
iteratively until a quality mesh is obtained.

Suppose P = {p1,...,p,} is a set of points in N¢. A simplex defined by (d+1) affinely
independent points from P, is a Delaunay simplex if the circumsphere of the simplex
contains no point from P in its interior. The union of all Delaunay simplices forms the
Delaunay diagram DT (P). If P is not degenerate, then DT (P) is a triangulation of the
convex hull of P (Figure 5.7).

The geometric dual of the Delaunay diagram is the Vorono: diagram, which consists
of a set of polyhedra Vi,...,V,, one for each point in P. V; is called the Vorono: cell of
pi, and p; is called the center of V;. Geometrically, V; is the set of points in ¢ whose
distance to p; is less than or equal to that of any other point in P.

One of the desired properties for a mesh that the Delaunay triangulation gives is that
among all triangulations of a set of points in 2D, the Delaunay triangulation maximises
the minimum angle. In any dimension, it always contains the nearest neighbour graph
of the set of points, i.e. in the Delaunay triangulation, every point is directly connected
with its nearest neighbours. The Delaunay triangulation also contains the minimum
spanning tree connecting to the set of points.
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(a) (b)

Figure 5.7: Delaunay definition. (a) Two dimension: circle C(r) is empty if it contains
no vertices, and (b) three dimension: circumsphere B(c, R) is empty if it contains no
vertices.

To generate the Delaunay-like triangulation for a polygonal domain €2 that retains
the boundary, we would use the constrained Delaunay triangulation. Let P be the set of
vertex points of (). Two points p and ¢ in P are visible from each other if the line segment
pg does not intersect with the interior of any boundary subdomain of Q2. A simplex of
d + 1 linear independent points is a constrained Delaunay simplex if its circumsphere
contains no points from P in its interior and it is visible to any of these d + 1 points.
The union of all constrained Delaunay simplices forms the constrained Delaunay diagram
CDT(9).

The Delaunay refinement first constructs C DT (£2) and then systematically and adap-
tively adds Steiner points to improve the mesh quality. Ruppert [1995] developed a
Delaunay refinement algorithm for 2D which generates well-shaped meshes:
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Ruppert Iteration
Input A polygonal (PSLG) domain €2 in ®?, and a threshold pa-
rameter @ for the smallest angle.

1. Let T = CDT(Q).
2. Let S be the triangle in 7" that has the smallest angle.
3. While the angle of S is less than 6

(a) Let ¢ be the circumcenter of S.

(b) If ¢ is not contained in the diameter-circle of any bound-
ary segment 7', then add c as a new Steiner point.

(c) Else, add the middle point of that boundary segment as
a new Steiner point.

(d) Update the constrained Delaunay diagram and let S be
the simplex 7" with the smallest angle.

Theorem 1. (Ruppert). For any # < 20.7° and for any polygonal domain € in R?,
the Ruppert Iteration terminates with a mesh where the smallest angle is at least 6. In
addition, there is a constant C' such as that the size of the mesh returned by the Ruppert
Iteration is no more than C times the size of any mesh for {2 whose smallest angle is at
least 6.

Shewchuk [1997] develops a GNU software called Triangle
(http://www.cs.cmu.edu/ quake/triangle.html) which generates exact Delaunay tri-
angulations, constrained Delaunay triangulations and quality conforming Delaunay tri-
angulations. It works with a piecewise linear system in 2D. It implements the Ruppert’s
Delaunay refinement algorithm for 2D meshing. The implementation is very robust due
the use of exact arithmetics [Shewchuk, 1996b]. Users can specify constrains on angles
and triangle areas. The basic algorithms used in Triangle provide a guarantee on the as-
pect ratio and guarantee that the size of the mesh generated is at most a constant factor
of the best possible. It is perhaps the most robust software for Delaunay triangulation
and refinement in 2D. Triangle 1.3 was released on July 1996, it is written in C and
it runs on almost all Unix and Linux platforms. One can call the interface of Triangle
from other programs.

5.2.2 Delaunay refinement in 3D

Mesh generation in 3D is inherently harder than in 2D. The input description of the
domain is more complex; the meshes are usually larger; the boundary cases are more
complicated; and the proof of correctness is more challenging. Ruppert’s results can not
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be directly extended from 2D to 3D. The main reason is the following: Let M be a well-
shaped Delaunay mesh in 3D with a set of points P. Let P’ be a set of points obtained
from P by a small random perturbation of P. Then, with high probability, the Delaunay
triangulation of P’ is not well-shaped.

For 3D Delaunay refinement, let S be a simplex in R¢ and let shape(S) be a quality
condition of S, i.e., the radius ratio, the radius-edge ratio, or the radius-shortest-edge
ratio of S. Let d’ < d. Then a d’-dimensional great circle of B is the intersection of
B with a d'-dimensional hyperplane passing through the center of B. A simplex s is a
boundary simplex in CDT(Q) if it is contained in a boundary subdomain of 2. Suppose
s has dimension d’. Then the diameter-circumsphere of s is a (d — 1)-sphere where s is
circum-subscribed by only one of its d’-dimensional great circles.

The following is a basic scheme for the Delaunay refinement directly extended from
the Ruppert Iteration. Some simple variants of this scheme can be used in any dimension.

Let shape(S) be a shape measure of a simplex S.
Scheme Delaunay Refinement

Input A polygonal (PLS) domain Q in %¢, and a threshold param-
eter 6 for the shape condition.

1. Let T = CDT(S).
2. Let S be the simplex in 7" with the worst shape(S).
3. While shape(S) is less than

(a) Let ¢ be the circumcenter of S.

(b) If ¢ is not contained in the diameter-circumsphere of any
boundary simplex in 7T, then add ¢ as a new Steiner
point.

(c) Else, let s be the boundary simplex with the small-
est dimension such that ¢ is contained in the diameter-
circumsphere of s, add the circum-center of s as a Steiner
point.

(d) Update the constrained Delaunay diagram and let S be
the simplex T with the worst shape(S).

Ruppert’s refinement is a special case of this scheme when 6 is the smallest angle and
d = 2. Unfortunately, Ruppert’s theorem does not directly extends from 2D to 3D if the
radius ratio is used; there is no constant that guarantees the termination of the Delaunay
refinement procedure. The main problem is that the standard Delaunay refinement does
not eliminate silvers.
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Another approach to ensure the termination of the Delaunay refinement procedure is
to use a shape condition that tolerates silvers. Miller et al. [1995] suggested the use of
the radius-shortest-edge ratio (instead of the aspect ratio introduce by Frey and George
[2000] and describe in section 3.2). They have shown that the radius-shortest-edge ratio
is the strongest shape condition that tolerates silvers. We can apply this shape condition
to the 3D Delaunay refinement (for 2 € R%) changing the step 3 of the latter algorithm
by “While radius-shortest-edge ratio of S is less than #”, the rest of the scheme is the
same.

Recently, Shewchuk [1997] has shown that the above algorithm terminates with a
properly chosen constant for the radius-shortest-edge ratio.

Theorem 2. (Shewchuk). For any § > 2, 3D Delaunay Refinement with Radius-
Edge Ratio terminates. In addition, the size of the mesh produced is linear in the size of
the “optimal” well-shaped mesh for the same domain. Some of the examples he showed
in his paper shown dihedral angles bounded between 21° and 149°.

Based on Shewchuk [1997] theoretical work on 3D extension and Triangle software,
Hang [2001] generates the extension of Triangle to 3D meshing GNU software that
is called Tetgen (http://tetgen.berlios.de/), it is written in C++, version 1.0 was
released on Agust 2001 and runs on almost all Unix and Linux platforms. Tetgen follows
exactly the same input and output formats than Triangle, although the input can be
also a surface mesh. Users can specified constraints on radius-shortest-edge ratio and
tetrahedral volume (see Appendix D for technical details).

Tetgen is the software we are using in this work to generate the Delaunay constrained
triangulations in 3D for our MRI volume tissues.

5.3 Summary

Since ART meshes are almost regular, we think that by applying the bisection method
that maximises the minimum angle we can achieve a better shape quality for the end mesh
than with Delaunay methods, since Delaunay rely first on the construction of a Delaunay
surface before construct and refine the final tetrahedral mesh. The problem with the ART
meshes is that since it is not based on the surface of the volume, the representation of
the surfaces is not that exact. However, we can first apply the refinement only on the
boundaries and interfaces between tissues and then take this output as our input for
the refinement depending on the error estimation of the numerical model or, any other
criterion for refinement.

Delaunay refinement has been applied on FEM modeling problems with very satisfac-
tory results, although, at the present, silver tetrahedra can not be avoided. Nonetheless,
with ART refinement meshes by bisection, we believe we will not have such a problem.
Therefore we need first to evaluate both geometrical models in the numerical model to
decide which one is preferable for the problem of MEG/EEG source localisation.
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Chapter 6

Geometrical comparison of mesh
refinements obtained by bisection
and Delaunay approaches

Most of the work reported in the FEM literature deals with generation and refinement
of Delaunay 3D meshes. The starting point for this project has been the refinement of
almost regular meshes (ART) and the idea of bisection to keep as much as possible the
quality of ART elements.

The main objective of this chapter is to test both approaches (described in Chapter 5)
with our tissues of interest in order to evaluate their geometrical differences (those pre-
sented in Chapter 3) and yield the first conclusion in terms of geometrical quality. The
second conclusion is related to the test of both geometrical models into the numerical
FEM model, to finally yield the global conclusion of which geometrical model suits better
the particular problem of MEG/EEG source localisation. This last test is, at the present,
out of the scope of this report.

To achieve our goal we need to implement the Rivara and Levin [1992] bisection
method for the refinement of ART geometrical model. To test the Delaunay refinement
model, we have found a GNU software called Tetgen to generate and refine 3D meshes
(see Appendix D and E, respectively, to find technical information about both programs).

In the forthcoming sections we will show the progress achieved at each stage.

6.1 Results on bisection refinement from ART vol-
ume meshes

At this stage we have implemented the Rivara and Levin [1992] 2D bisection applied
to 3D surface meshes. That is, we have bisected surface mesh of triangular elements.
Figure 6.1 shows an example of the algorithm applied to a sphere surface of 32 almost
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regular triangular elements.

(a)

.

(b)

Figure 6.1: Rivara 2D bisection applied to 3D surface. (a) Original surface, (b) after one
refinement and (c) after a second refinement. The light elements mark the elements to

be refined

Table 6.1 shows the evaluation of the surface as the refinement is taken place. The first
row shows the original sphere with 32 almost regular triangles. Planarity and deviation
does not change with increasing refinement, whereas smoothness increases. On the other
hand shape quality of elements decreases slightly with refinement.

Mesh | Planarity | Deviation | Smooth. Quality | # Elem.
min (mean) | min (mean) | min (mean) | min (mean)
Orig. | 05 (0.5 | 1.0(1.0) | 0.87 (0.87) | 0.79 (0.84) 32
Sphe.l | 0.5 (0.5) | 1.0 (1.0) | 0.87 (0.88) | 0.63 (0.82) 34
Sphe.2 | 0.5 (0.5) | 1.0 (1.0) | 0.87 (0.89) | 0.46 (0.77) 48
Table 6.1:

Surface evaluation parameters. First column shows the mesh type: the
first row contains the reference mesh. The the other rows contain first
refined mesh and second refined mesh, respectively. # Elem. refers to
number of triangles per mesh. The other parameters are dimensionless.

Since we are not able to work with the surface meshes extracted from ART generator,
we applied the same algorithm to the reference surface show in Figure 3.5 obtained with
the marching cube algorithm. Figure 6.2(a) shows the original mesh, (b) the mesh after
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the first refinement and (c) after the second refinement. The light triangles indicate the
elements to be refined.

(a) (b) (©)

Figure 6.2: Rivara 2D bisection applied to 3D surface. (a) Original surface, (b) after one
refinement and (c) after a second refinement. The light elements mark the elements to
be refined

We do not show the table of quality measures since Rivara technique generates well-
shaped mesh refinement if the initial mesh is also well-shaped, which is not the case
of marching cube surface. This is a temporarily example. We need to generate almost
regular surfaces (e.g. Delaunay surfaces) in order to show that the quality of the surfaces
does not change dramatically after the bisection refinement. However, we consider that
the best strategy for the particular MRI volumes we are working with will be to make the
refinement directly from the ART volume mesh and, after this refinement, extract the
surface. This is because, if we want to keep as well-shaped tetrahedra quality as possible
during the refinement of ART meshes, it will be easer to adjust the whole volume mesh
to the surface of the real volumes and then extract the surfaces, rather than do it in the
inverse order.

The extension of Rivara and Levin [1992] algorithm in 3D has been described in
subsection 5.1.2, and the implementation is still in progress.

6.2 Results on Delaunay generation and refinement
meshes from MRI volumes
One of the drawbacks of Delaunay 3D generation and refinement is that they are based

on the volume surface mesh. This constraint is a drawback for our problem since the
correctly construction of the volume mesh, in terms of quality, will depend on the quality
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of the surface mesh. There are two main approaches to generate a surface mesh from
the MRI volumes: 1) based on contours [Geiger, 1993] and 2) based on cloud of points
[Amenta et al., 2001]. There has been several work into this area which is call “surface
reconstruction”, and to generate a well-shaped surface from a non-convex and complex
volumes, such as head tissues, is not trivial. Furthermore, our problem involves the use
of three different tissues in the same model which implies three different material and
therefore boundaries between materials that must conform the complete head model.

Our first approach to test the Tetgen software was to generate a sphere surface mesh
generated with marching cube method with only one material as an input to Tetgen.
Figure 6.3(a) shows the 3D Delaunay tetrahedrisation with 128 tetrahedra, (b) shows the
same sphere but this time Dealunay constrained to a quality (1.14) and volume values
(3000) given a 346 tetrahedral mesh.
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Figure 6.3: Delaunay 3D mesh with one material. (a) Delaunay tetrahedral mesh, (b)
Delaunay constrained tetrahedral mesh, (Q and V'), (¢) dihedral angle distribution of (a)
and (b), and (d) aspect-ratio distribution for (a) and (b).
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Figure 6.3(c) shows the dihedral distributions for both meshes. For mesh (a), angles
range from 47.26° < ¢ < 90° with no bad tetrahedra, whereas for mesh (b) angles range
from 2.73° < ¢ < 174.34° with 13 bad elements.

Figure 6.3(d) shows the shape quality distribution of both meshes, where mesh (a)
ranges from 1.5 < @) < 2.55 and for mesh (b) 1.12 < @ < 21.79. Finally, both generation
processes took a2 0.25sec. Mesh (b) is the refined Delaunay tetrahedrisation which con-
tains 13 bad elements with wider range of dihedral angles and some of its bad elements
with very high radius-shortest-edge ratio.

A different example is shown in Figure 6.4 where two different materials are consid-
ered.
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Figure 6.4: Delaunay 3D mesh with two materials. (a) Delaunay tetrahedral mesh, (b)
Delaunay constrained tetrahedral mesh, (@ and V), (c) dihedral anggle distribution of
(a) and (b), and (d) aspect-ratio distribution for (a) and (b).
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The two concentric surface meshes were generated with the marching cube algortihm
as an input for Tetgen. Figure 6.4(a) shows de Delaunay triangulation with 5,331 tetra-
hedra, and Figure 6.4(b) de Delaunay refined triangulation constrain to a quality (1.8)
and volume values (100), with 36,538 tetrahedra. Figure 6.4(c) shows the distribution of
dihedral angles for both meshes. For mesh (a) angles range from 0.12° < ¢ < 179.77°
with 1,722 bad elements, whereas for mesh (b) angles range from 0.29° < ¢ < 179.17°
with 2,625 bad elements.

Finally Figure 6.4(d) shows the distributions of the shape quality for both meshes,
where mesh (a) has a range of 1.06 < @ < 446.9 and for mesh (b) 1.02 < @ < 225.5.

Although range of dihedral angles are similar in both cases, for mesh (b) it can be seen
that quality shape shows a big mode below 2 and proportionally has less bad elements
(2,625/36,538) than mesh (a) (1,722/5,331).

We can consider that Delaunay mesh refinement with a constrain to shape quality
and volume can generate better shaped meshes. Although, the number of tetrahedra
increases considerably since the algorithm inserts many Steiner points into the surface
mesh in order to meet the constraints (mesh (b)). This may be not necessary to accurately
represent the geometry. The processing times for these processes were 2.63sec for mesh
(a) and 20.34sec for mesh (b).

6.3 Comparisons

At the present stage we do not have enough material to make the comparison with the
MRI volumes. However from the latter examples, we can view some advantages and
disadvantages of both methods.

On the one hand, ART meshes need an extremely long processing times, being =
45man for a geometrical constructor of 98,304 tetrahedra where only 26,625 are the MRI
tissues of interest. The surfaces or boundaries between tissues do not match with the
real surfaces. Since we will need to refine first the boundaries to make them match, this
process could increase the number of tetrahedra in the boundaries or tissue interfaces,
and might not be really needed for the numerical modelling process.

On the other hand, since refinement will begin with a very well-shape mesh (ART),
bisection model should give us a well-shaped refined mesh with no silver or other bad
shaped elements.

For the Delaunay tetrahedrisation, the first drawback that we mentioned before is
the need of a well-shaped (Delaunay e.g.) surface mesh which from MRI volume is not
trivial to generate. Mesh element shape can be controlled in quality and volume which
it is an advantage for the numerical computations, on the contrary, apparently for such
a complex structures, silver and other bad shaped elements might be unavoidable.

Another disadvantage of 3D Delaunay approach is that in order to meet the con-
straints needed, the algorithm inserts Steiner points into the surface mesh (see Fig-
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ure 6.4(b)) which makes the mesh increases in number of elements which once more
could no be really needed for a useful representation of the volume geometry and could
be undesirable from the computation point of view. One really excellent advantage of
Tetgen implementation is that the processing times are much faster compared with
those of ART generation meshes, due to the used of exact arithmetic with the geometric
predicates develop by Shewchuk [1996a)].
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Chapter 7

Conclusion and Future work

Based on the work made at ENST by Dokladal et al. [2001] on MRI tissue segmentation
and by Pescatore [2001] on almost regular tetrahedral (ART) meshes, the problem of
mesh refinement has been address. The first aim of the project is to refine the current
mesh in order to have a better geometrical representation of the tissue interfaces (brain,
skull and scalp) extracted from MRI data. The next stage is to adapt the mesh locally,
to a specific area of the tissues, in order to improve the accuracy of the computation and
consequently the processing time for the localisation of the neurological activity.

Since our work is based on ART meshes, the first task that we carry out was the
geometrical evaluation of them. We found that the surface ART meshes have a high
quality shape since they are extracted from almost regular tetrahedra but surfaces do
not describe properly the tissues of interest. Chamfer distance in ART brain mesh
showed a mean distance of 4.79 pixels with a high standard deviation of 3.75 pixels. This
measurement in the other two tissues does not have sense since surfaces were not properly
extracted. Although the rest of the geometrical parameters described in section 3.1.2
cannot be applied to ART meshes, since vertices are not on the surface, these constitute
useful tools for further surface analysis after the mesh refinement.

In volumetric ART meshes, we also found a very high shape quality and well-shaped
dihedral angle distribution. Apart of the noticeable disproportion in number of tetrahe-
dra, between tissues and background, it can be seen from Figure 3.10(a) that the tissues
are not properly centred respect with to the geometrical constructor, this makes difficult
the setting of the scale input parameter when the meshes are generated, therefore it is
not possible to use this background in a effective way. This can be also related with
the long time consuming of the process (about 45min for n = 4, only for the homotopic
labelling), since we suppose that the homotopic labelling runs over the whole geometrical
constructor looking for head tissues. Since most of the tetrahedra are background, the
program is processing a large part of the geometrical constructor which does not contain
tissue, this is a misuse of processing time.
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From the review of literature of mesh refinement made in Chapter 4 we found that
most of the work that have been done related with tetrahedral mesh generation for FEM
modelling purposes are based on constrained Delaunay methods [George, 1997; Shewchuk,
1997], and refinement of triangular and tetrahedral meshes based on bisections [Liu and
Joe, 1995; Rivara, 1997; Plaza et al., 2000] or other subdivision techniques [Bey, 1995;
Mukherjee, 1996] from an already generated mesh. For some of these techniques there
exists already a public domain software to generate tetrahedral meshes based on the
surface mesh of the volumes.

Therefore, after mesh evaluation, we decided to investigate both strategies of mesh
refinement and make used of the public domain software that already exist (see Chap-
ter 5).

e In terms of surface and volumetric refinement by bisection methods, since it was
not possible to use the surface meshes extracted from ART volumetric meshes, we
temporarily generate surface mesh per tissue using the marching cube algorithm
[Lorensen and Cline, 1987] trying to get as close as possible the same triangle area
as the ART triangles. We implemented the bisection mesh refinement of surface
[Rivara, 1997], as shown in Figures 6.1 and 6.2. This algorithm will be extended
to tetrahedral subdivision and applied first on those tetrahedral that share tissue in
order to smooth and to decrease the error in the surfaces. This refinement technique
can be used as well in any part of the tissues as necessary when meshes run under
the numerical simulation.

e In the case of Dealunay refinement techniques we used the software called Tetgen
(http://tetgen.berlios.de/). Our first approach to test the Tetgen software
was to generate a sphere surface mesh using the marching cube method with only
one material as an input (see Figure 6.3). A different example is shown in Figure 6.4
where two different materials are considered. The two concentric surface meshes
were generated with the marching cube algorithm as an input for Tetgen. From
these examples we notice that bad elements cannot be avoided.

The main objective of this exercise is to compare, for the particular case of EEG and
MEG source localisation problem, which of these two geometrical models are more feasible
from the geometrical point of view. At the present stage we do not have enough material
to make the comparison with the MRI volumes. However from the above examples, we
can view some advantages and disadvantages of both methods.

On the one hand, ART meshes need an extremely long processing times, being =
45min for a geometrical constructor of 98,304 tetrahedra where only 26,625 are the MRI
tissues of interest. The surfaces or boundaries between tissues do not match with the
real surfaces. Since we will need to refine first the boundaries to make them match, this
process could increase the number of tetrahedra in the boundaries or tissue interfaces,
and might not be really needed for the numerical modelling process.
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On the other hand, since refinement will begin with a very well-shape mesh (ART),
bisection model should give us a well-shaped refined mesh with no silver or other bad
shaped elements.

For the Delaunay tetrahedrisation, the first drawback that we have is the need of
a well-shaped (Delaunay e.g.) surface mesh which from MRI volume is not trivial to
generate. Mesh element shape can be controlled in quality and volume which it is an
advantage for the numerical computations, on the contrary, apparently for such a complex
structures, silver and other bad shaped elements might be unavoidable.

Another disadvantage of 3D Delaunay approach is that in order to meet the con-
straints needed, the algorithm inserts Steiner points into the surface mesh (see Fig-
ure 6.4(b)) which makes the mesh increases in number of elements which once more
could no be really needed for a useful representation of the volume geometry and could
be undesirable from the computation point of view. One really excellent advantage of
Tetgen implementation is that the processing times are much faster (~ 20.34sec for
36,538 tetrahedron) compared with those of ART generation meshes, due to the used of
exact arithmetic with the geometric predicates develop by Shewchuk [1996a].

Summary of approaches. Since ART meshes are almost regular, we think that
by applying the bisection method that maximises the minimum angle we can achieve a
better shape quality for the ended mesh than with Delaunay methods, since Delaunay
rely first on the construction of a Delaunay surface before construct and refine the final
tetrahedral mesh. The problem with the ART meshes is that since it is not based on the
surface of the volume, the representation of the surfaces is not that exact. However, we
can first apply the refinement only on the boundaries and interfaces between tissues and
then take this output as our input for the refinement of tissue areas depending on the
error estimation of the numerical model or, any other criterion for refinement.

Delaunay refinement has been applied on FEM modelling problems with very satisfac-
tory results, although, at the present, silver tetrahedra can not be avoided. Nonetheless,
with ART refinement meshes by bisection, we believe we will not have such a problem.
Therefore we need first to evaluate both geometrical models in the numerical model to
decide which one is preferable for the problem of MEG/EEG source localisation.

For the future work we have to accomplish the following tasks:

e Extend the Rivara’s bisection algorithm in 3D, to made both the adaptation of
the mesh to the boundaries of the tissues and to refine areas were more activity is
expected.

e Generate Delaunay surfaces from MRI volumes in order to use them as an input for
Tetgen. Adapt the 3 surface meshes into a single mesh indicating the difference in
material (tissues) as an input for Tetgen to generate the refine Delaunay meshes
with the 3 tissues integrated.
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e Test both geometrical models in the numerical model to decide which one is prefer-
able for the problem of MEG/EEG source localisation.
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Appendix A. MRI segmentation
programs at ENST.

This appendix provides a short description of the MRI segmentation
procedure.

DIRECTORY OF FILES: ~/martinz/PROJECT_ENST/MRI_SEGMENTATION/Petr/
DATE: August 2002.

This software was developed under the framework of the COMOBIO
project. The software has been jointly developed by P. Dokladal
and R. Urtasun [2001].

1. Contents
ittt i

The directory
PROGS - contains the sources of the programmes.

bin - contains the binaries and the links to some binaries (mostly
situated in PROGS) .

COMOBIO - contains the report, presentation slides, images,
animations, etc.

resultats/COMOBIO_LOCAL - contains the input data and the results (only
for the correctly segmented following images:
hapdey
Lyon
PITIE_SALPETRIERE/COU
PITIE_SALPETRIERE/GAU
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PITIE_SALPETRIERE/IM1
PITIE_SALPETRIERE/MAZ
PITIE_SALPETRIERE/MRDC )

FHRHHE
2. Program summary
R

Compiling the programs may be a pain, sorry for that. It’s not in the
development state of a commercial application. Development of other
programs is actually still in progress by the time of writing this.

The programs are dependent of these libraries : LEDA, tivoli. Some
programs will not compile without LEDA. It has been used to
implement the waiting lists. LEDA is available for free from
http://www.mpi-sb.mpg.de/LEDA. Tivoli is internal image processing
software library of the Department of Image Processing by ENST,
Paris.

The programs will compile with the Makefile utility after adjusting
the necessary flags and environment variables.

2.1 Script programs used for the segmentation
R

auto_*.sh - script programs that are used to segment the MRI’s.
These programs are called from auto_atlas.

auto_atlas.sh - the script which calls the others one by one. It
shouldn’t be run manually, since it need’s special arguments.

go*x - a set of script programs used to start the
segmentation. They can be used to send the segmentation to

another Unix-based machine. See the details lower.

2.2 Binaries (or little script utilities)
HEHHHHAHHAEH B HAHH R RS HAEF RS HAEF RS HEH RS R RHR R

add_border.sh - script used to add an empty border around the input
image. The hilmi’s fr3d needs it.
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ascii2image - converts an ASCII file to an .ima file

caca - tree-based implementation of h-minima, permitting the
extraction of n markers identified as the n basins of maximum dynamics
of the mask function.

cc_tree - segmentation program performing the \lambda-thinning,
\lambda-thickening or \lambda-skeletonization. Extracts a
simple connected components by iterative simple points
manipulations.

ima2pgm,

pgm2ima,
eps2jpeg.sh - data format converter scripts

fuse_cervelet - utilitary program used in auto_tc_cerv.sh. Not to be
called manually.

geodist - geodesic (mask conditioned) distance calculation.

get_marker,

get_params.sh,

order_labeled_objets,

t_getClusters,

t_robust - utilitary programs. Not to be called manually.

lpe_reconstr - reconstruction based on the watershed. Takes a set of
markers and a mask image. IMPLEMENTATION UNFINISHED: Doesn’t
use the distance on the plateau.

make_pub.sh,

make_view.sh - utilitary scripts used to create 3D sections with loox

L s e e e s
3. How to run the segmentation on one image
L s e e e s

Before running the segmentation, you must manually prepare one
argument files called "ATLAS_PARAMS". See the auto_atlas.sh for
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details.

While the segmentation is supposed entirely automated, it is not 100%
liable. The user must stop the execution of the script at two places
to check the intermediate results. This is done by placing the "exit"
command on the right place in the auto_atlas.sh script. If earlier
stages of the auto_atlas.sh script are not to be re-executed, they
must be commented out manually. We have preferred some ergonomic
inconvenience but SIMPLICITY at this stage of development to excessive
complexity of the scripts.

The auto_atlas.sh script is run in this way:

1) create a directory to store the input data, argument files,
output of the scripts and the intermediate results. Go to this directory.

2) create the control file ATLAS_PARAMS (see details in auto_atlas.sh)

3) run "go machine_name" where '"machine_name" is a name of the
Unix machine where it will be executed. (.rhost file must be set
on the root directory to enable the remote shell execution - see
some Unix manual). Otherwise run: "auto_segment.sh ‘cat
ATLAS_PARAMS‘" (inverse quotes)

4) the first execution will attempt to generate automatically the
"arguments" file containing the segmentation parameters. The
arguments file contains ten ASCII numbers. These are the means

and std deviations for five classes representing the air+bone,
cerebrospinal fluid, grey matter, white matter and fat in the

input image. Please

check manually that these correspond roughly. In 407 of cases the csf
is not found. If these are not correct, you must proceed manually to
generate them.

5) Place an "exit" command after the "Segmentation du cerveau"

section and run the segmentation for the second time. As soon as
it stops, check the *_brain_mask file. The object should delimit
correctly the encephalon. If it remains connected to the rest of
the head, lower the mean value or the std deviation (third and

fourth number if the arguments file) of the cerebrospinal fluid.
If it is incomplete then increase the mean (ninth number in the
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arguments file) of the fat.

6) Now, place the "exit" command after the "Obtention du tronc
cerebral et du cervelet" section. You may comment out the
extraction of the encephalon to prevent it to be recalculated.
When it finishes, check the *_tc and *_cervelet files. They should
contain the brain stem and the cerebellum, respectively.
Otherwise, you must modify either the manually-chose position of
the slice delimiting the upper end of the brain stem or the
cortex-intensity mean value.

7) Comment out the previous sections and continue the
segmention. Chances are that everything works fine now.

8) The intermediate results are stored in the current directory
(supposed this directory is mounted at the same place).
The output files are as follow:

Section: ‘‘Segmentation des hemispheres’’ *_hemisph_mask, *_hemisph

Section: ‘‘Calcul de 1’appartenance au cortex’’ *_cortex

Section: ‘‘Obtention du contour de la tete’’ *_head_mask_lisse,
*_head_mask_lisse_inv, *_head_mask, *_head_mask_inv

Section: ‘‘Obtention de la peau’’ *_peau

Section: ‘‘Obtention de la graisse’’ *_graisse

Section: ‘‘Obtention du crane’’ *_IrmEntree, *_crane, *_crane_focalise,
*_crane_focus_limit

Section: ‘‘Obtention des muscles’’ *_muscles

Section: ‘‘Obtention de 1’image de contours et d’etiquettes a fin d’evaluer’’

*_labels, *_contours

S s s s s s s s s s s s s
3. How to run the segmentation on all images
s S s s s s s s s s s s

You can run the segmentation of several images at a time. This is
useful for the development of new methods that must tested on a
serie of images. Use the go_all.sh script to create and send the
processes on other machines. This script doesn’t take parameters,
it must be modified by the user. To kill the dispatched
processes, use kill_all.sh (must also be modified to use correct
names) . Otherwise, use go_signac_go.sh to have signac do all the
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images one by one.
S s s s s T s s

To contact the author: Peter.DOKLADAL@cmm.ensmp.fr
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Appendix B. ART mesh generation
at ENST.

Pescatore [2001] developed a library called TIC where we can find all the programs used
to generate the ART meshes.
B-1 Sequence to generate the ART meshes

There are two main steps, 1) generate the geometrical constructor and 2) obtain the
surface and volume ART homotopic labelled meshes.

1. GEOMETRICAL CONSTRUCTOR:

Program: TicFuchsTetra.cpp

Directory: ~martinz/PROJECT_ENST/PROGS/Tic/bin

Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Input parameters for TicFuchsTetra:

TicFuchsTetra -h

-1 <lambda> default = 1/3

-¢ <condition> (0 to 3) default = 0

-t <type> of connectivity

-n  <number> of tetrahedra default = 100,000

-0 <output> the mesh of the geometrical constructor

Example: TicFuchsTetra -t 24 -o mesh n4
Output files: mesh n4.tetra, mesh n4.ntetra

61



2. ART HOMOTOPIC LABELLED MESHES:

Program: TicFuchsMixel.cpp

Directory: ~martinz/PROJECT_ENST/PROGS/Tic/bin

Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Input parameters for TicFuchsMixel:

TicFuchsMixel -h

<input image>
<debugger>

<topology>
<mesh>
<output>
<iterations>

<type of model>

<threshold 1>
<threshold 2>
<case>

<scale>

(format .ima)

It generates de evolution files of the process

Debug files can be converted into .ima with TicTetra2Gis
Use for topology of sphere

Geometrical constructor file

Name of the output mesh file

For smooth, 0 = no smoothing or number of iterations

for Laplacian smooth. Default = 0

When it is used it takes the central tetrahedron to begin
the homotopic labelling. If it is not use it takes other
model which is not working properly.

Tissue proportion per tetrahedron (optimum 0.8)

Tissue proportion per neighbour by face (optimum 0.6)

0 = Non homotopic labelling, only tissue proportion
1 = Homotopic labelling, only for the maximum volume tissue
2 = Homotopic labelling for all tissues

In mm. Scale factor to expand the geometrical constructor
to the size of the volume image.

Example: TicFuchsMixel -i MRI_segmented -t -m mesh n4 -o tissue_s160 -f -ti
0.8 -t2 0.6 -c 2 -s 160

Output files: tissue_s160.mtetra, the surface meshes:

tissue_s160_1.tri,

tissue_s160_2.tri, tissue_s160_3.tri.

If the option -it is used then:

tissue_s160_smooth_3.tri
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B-2 Mesh file formats

Volume image: GIS format
2 files: *.dim -> header and *.ima -> binary file
*.dim contains:

Nx Ny Nz (image dimension)

-type (516: signed short, Ul6: unsigned short, U8: unsigned char)
-dx (voxel size in (mm) dx,dy,dz)

_dy

-dz

For example:
256 256 106
s16

0.937

0.937

1.500

Surface mesh format TRI: *.tri

- number of vertex

Xy z coordinates of vertex follow by
nx ny nz normal coordinates

- number of triangles vertex of triangles

For example:
- 21891
123.496 123.211 4.75914 -0.108704 0.604082 -0.789473
125.105 123.589 4.86635 -0.224496 0.542998 -0.809169
123.727 124.042 5.54772 -0.116728 0.571328 -0.812379
- 43778 43778 43778

395 9501
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Tetrahedral mesh: 3 files: *.ntetra *.tetra *.mtetra
File *.tetra

- number vertex
X y z coordinates

- number of tetrahedron
list of vertices of the tetrahedron (th tetrahedra are oriented with the normals
at the exterior of the faces)

For example:

- 18128

-2 -1.41421 -0.816497

-1 -1.41421 -0.816497
1.11022e-16 -1.41421 -0.816497
1 -1.41421 -0.816497

-1.66667 -0.471405 -0.816497
-0.666667 -0.471405 -0.816497
0.333333 -0.471405 -0.816497
1.33333 -0.471405 -0.816497
-1.33333 0.471405 -0.816497
-0.333333 0.471405 -0.816497
0.666667 0.471405 -0.816497
1.66667 0.471405 -0.81

- 98304 98304 98304
21 2608 2610 2611

2608 512 2609 2612
2610 2609 514 2613
2611 2612 2613 515

File *.ntetra : the neighbours by vertex in the tetrahedral mesh

- number of tetrahedron
size of the list of neighbours, neighbour\_1 ... neighbour\_n

For example:
- 24

23123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
23023456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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23013456789 10 11 12 13 14 15 16 17 18 19......
File *.mtetra: label (or material) of each tetrahedron
format: - number of labels labell ... labeln label composition

For example:

-4

0 50 100 255 (0O=backfround, 50=brain, 100=skull, 255=skin)
010000

010000

010000

0 100 0 0
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Appendix C. Evaluation and
miscellaneous programs.

C-1 Surface mesh evaluation

PROGRAM FOR DISTANCE: evalMeshDist.c
Directory: ~martinz/PROJECT_ENST/PROGS/Evaluation/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: brain_bin.ima, MCbrain.tri
HELP:

18) martinz@kahlo % “martinz/PROJECT_ENST/PROGS/Evaluation/evalMeshDist -h
evalMeshDist: makes the evaluation of the distance between the original binary
surface of the volume (.ima) and the vertices of its surface mesh (.tri)

using Chamfer distances. Inputs are the original binary volume image

(.ima, only U8BIT) and the surface mesh file (.tri). The output is a ordered ASCII
vector with the inside or outside distance of each vertex to the surface (.dat).

evalMeshDist: input argument missing

Usage: evalMeshDist -ilnput| <image (Tivoli)>
[-mlesh input mesh TRI format|]
[-olutput| <array with differences (ASCII)>]
[-hlelpl]

EXAMPLE:

15) martinz@kahlo % evalMeshDist -i brain_bin -m MCbrain -o diff

reading input image achieved
distance (from 962916 voxels) completed
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Inverting. ..

distance (from 5983900 voxels) completed

writing the result achieved

Open mesh file: MCbrain.tri

Num vertex: 4792, Num triangles: 9580

Open mesh file: diff.dat

Median= 1.000 ; Mean= 1.275 ; std= 0.478; Maxima= 7
the end (13.0s)

Output files names: diff.dat, distance map.ima

16) martinz@kahlo % 1s
MCbrain.tri brain_bin.ima distance_map.dim
brain_bin.dim diff.dat distance_map.ima

PROGRAM FOR GEOMETRY: evalMeshGeom.c
Directory: ~martinz/PROJECT_ENST/PROGS/Evaluation/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: MCbrain.tri
EXAMPLE:

49) martinz@kahlo 7 evalMeshGeom MCbrain.tri
Geometric feature analysis:

SHAPE QUALITY

Minimum : 0.246002 (triangle #2099)
Mean : 0.790570

Stan. dev. : 0.115592

PLANARITY
Minimum : 0.908845 (triangle #4757)
Mean : 0.985701

Stan. dev. : 0.012872

SMOOTHNESS
Minimum : 0.933956 (triangle #2951)
Mean : 0.993996
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Stan. dev. : 0.006319

DEVIATION
Minimum : 0.649510 (triangle #4762)
Mean : 0.893026

Stan. dev. : 0.051207

THE END.

C-2 Volume mesh evaluation

PROGRAM VOLUME MESH: evalTetMesh.cpp
Directory: ~martinz/PROJECT_ENST/PROGS/Evaluation/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: brain180.tetra
EXAMPLE:

109) martinz@kahlo % evalTetMesh -m brainl80.tetra

Evaluating TetMesh file: brainl80.tetra
18128 vertices, 27496 triangles, 6874 tetrahedra

Mesh quality statistics:

Smallest volume: 97.421 | Largest volume:
Smallest shape ratio: 1.1793 | Largest shape ratio:
Smallest area: 39.553 | Largest area:
Shortest edge: 8.2216 | Longest edge:
Smallest dihedral: 47.2564 | Largest dihedral:

Dihedral Angle histogram:

0 - 10 degrees: 0 | 90 - 100 degrees:
10 - 20 degrees: 0 I 100 - 110 degrees:
20 - 30 degrees: 0 I 110 - 120 degrees:
30 - 40 degrees: 0 I 120 - 130 degrees:
40 - 50 degrees: 9178 I 130 - 140 degrees:
50 - 60 degrees: 4570 I 140 - 150 degrees:
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60 - 70 degrees: 9178 I 150 - 160 degrees: 0

70 - 80 degrees: 4570 I 160 - 170 degrees: 0
80 - 90 degrees: 6869 I 170 - 180 degrees: 0
Shape quality histogram:
0.50 - 1.50 : 6874 | 8.50 - 9.50 : 0
1.50 - 2.50 : 0 I 9.50 - 10.50 : 0
2.50 - 3.50 : 0 I 10.50 - 11.50 : 0
3.50 - 4.50 : 0 I 11.50 - 12.50 : 0
4.50 - 5.50 : 0 | 12.50 - 13.50 : 0
5.50 - 6.50 : 0 | 13.50 - 14.50 : 0
6.50 - 7.50 : 0 | 14.50 - 15.50 : 0
7.50 - 8.50 : 0 I 15.50 - 16.50 : 0

Shape histogram:

Silver:
Needle:
Spindle:
Wedge:
Cap:

O O O O O

There are 0 bad elements among 6874 elements.

C-3 Miscellaneous

To display the meshes:

The file meshes are display using Geomview GNU/GPL, which was written at the Ge-
ometry Center at the University of Minnesota between 1992 and 1996 (http://www.geomview.org/).

PROGRAM TO DISPLAY MESH: geomview
Directory: ~martinz/PROJECT_ENST/PROGS/Geomview /bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: dodec.off, sphere.off

In order to display the meshes with geomview, the files have to be converted to the
*.OFF format:
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#"dodec.off":

OFF

20 12 30
1.214124 0.000000 1.589309
0.375185 1.154701 1.589309
-0.982247 0.713644 1.589309
-0.982247 -0.713644 1.589309
0.375185 -1.154701 1.589309
1.964494 0.000000 0.375185
0.607062 1.868345 0.375185
-1.589309 1.154701 0.375185
-1.589309 -1.154701 0.375185
0.607062 -1.868345 0.375185
1.589309 1.154701 -0.375185
-0.607062 1.868345 -0.375185
-1.964494 0.000000 -0.375185
-0.607062 -1.868345 -0.375185
1.589309 -1.154701 -0.375185
0.982247 0.713644 -1.589309
-0.375185 1.154701 -1.589309
-1.214124 0.000000 -1.589309
-0.375185 -1.154701 -1.589309

.982247 -0.713644 -1.589309

1234

=

© 00 N O O
=
D w NN e o

-
OO 00 N O
O P W N -

15 10 5
16 11 6
17 12 7 11 16
18 13 8
19 14 9
19 18 17 16 15

The ”OFF” header tells us it’s a polylist file. The second line in the file tells us that
there are 20 vertices, 12 faces, and 30 edges. (The OOGL libraries presently don’t use the
edges value, so you can just use 0 if you don’t happen know the number of edges.) The
next 20 lines give a list of vertices. The last 12 lines specify the faces: the first number
is the number of vertices in that face. Since our polyhedron happens to be regular, all
faces have the same number of vertices (in this case, 5). The rest of the numbers on the

oo 0o o OO OO O1 OO O

o
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line are indices into the above list of vertices. After these numbers a RGB colour (1 00
= red) can be added as well as shown in the next example:

# This file represent an sphere with triangle elements.
# ‘‘sphere.off’’
OFF
18 32 0
56.24 0.000 0.000
0.000 56.24 0.000
-56.24 0.000 0.000
0.000 -56.24 0.000
0.000 0.000 56.24
0.000 0.000 -56.24
0.000 39.77 39.77
39.77 39.77 0.000
39.77 0.000 39.77
-39.77 0.000 39.77
-39.77 39.77 0.000
0.000 -39.77 39.77
-39.77 -39.77 0.000
39.77 -39.77 0.000
0.000 39.77 -39.77
39.77 0.000 -39.77
-39.77 0.000 -39.77
0.000 -39.77 -39.77
6 7 1.00 1.00 0.00
9 10 1.00 0.00 0.00
1

o

1.00 0.00
1813 1.00 0.00
1.00 0.00

o O O
o O O
o O

10 16 14 1.00 0.00 0.00
12 17 16 1.00 0.00 0.00
13 15 17 1.00 0.00 0.00
7 1.00 0.00 0.00
8 1.00 0.00 0.00
6 1.00 0.00 0.00
10 1.00 0.00 0.00
6 1.00 0.00 0.00
10 9 1.0
912 1.0
11 9 1.00
12 11 1.00 0.

o

0
0

o

0.00 0.0
0.00 0.0
0.00 0.0

o

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

WP NN PdPE = DO

o O O O

0 0.00
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331113 1.00 0.00 0.00
34811 1.00 0.00 0.00
3013 8 1.00 0.00 0.00
307 15 1.00 0.00 0.00
31147 1.00 0.00 0.00
3515 14 1.00 0.00 0.00
3110 14 1.00 0.00 0.00
3216 10 1.00 0.00 0.00
3514 16 1.00 0.00 0.00
3212 16 1.00 0.00 0.00
3317 12 1.00 0.00 0.00
3516 17 1.00 0.00 0.00
3313 17 1.00 0.00 0.00
3 015 13 1.00 0.00 0.00
3517 15 1.00 0.00 0.00

To execute Geomview you only have to type as follow:

geomview sphere.off

The next section will present some miscellaneous software mainly to convert formats
between the ones use by the TIC library (see Appendix B for detail about these formats)
and the format OFF.

To convert formats:

PROGRAM: J2tetra.cpp

Description: Extract from files *.mtetra and *.tetra (from the TIC library) the mesh
of the selected tissue (only one tissue each time).

Directory: ~martinz/PROJECT_ENST/PROGS/Utils/bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/
Sample files names: tissuel180.mtetra, tissuel80.tetra

Use: J2tetra file.tetra file.mtetra level

where file.tetra=geometry constructor, file.mtetra=labels per tetrahedron
and level =1 for brain, =2 for skull and =3 for head
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EXAMPLE:

J2Tetra tissuel80.tetra tissuel80.mtetra 2
writing data.tetra
number of vertex: 18128, number of tetrahedra: 3487

The data.tetra file corresponds only to the tetrahedral mesh of the skull.

PROGRAM: Tri20ff.c

Description: Converts the TRI format of the TIC library into OFF files to use for
display.

Directory: ~martinz/PROJECT_ENST/PROGS/Utils/bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/
Sample files names: MCbrain.tri
Use: Tri20ff -m file.tri
where -m <mesh> file.tri, the output will have the same and name extension *.off

EXAMPLE:

Tri20ff -m MCbrain

Open mesh file: MCbrain.tri

Num vertex: 4792, Num triangles: 9580
Writing MCbrain.off

the end (0.4s)

PROGRAM: Tetra20ff.c

Description: Converts the TETRA format of the TIC library into OFF files to use for
display.

Directory: ~martinz/PROJECT_ENST/PROGS/Utils/bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/
Sample files names: brain180.tetra

Use: Tetra20ff -m file.tetra

where -m <mesh> file.tetra, the output will have the same name and extension
* off
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EXAMPLE:

Tetra20ff -m brainl80.tetra

Num vertex: 18128, Num triangles: 27496
Writing braini80.tetra.off

the end (1.2s)

PROGRAM: Tri2Mesh.c

Description: Converts the surface TRI format of the TIC library into SMESH surface
files to use as an input for Tetgen (see Appendix E)

Directory: ~martinz/PROJECT_ENST/PROGS/Utils/bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/
Sample files names: MCbrain.tri

Use: Tri2Mesh -m file.tri

where -m <mesh> file.tri, the output will have the same name and extension
* smesh

EXAMPLE:

Tri2Mesh -m MCbrain

Open mesh file: MCbrain.tri

Num vertex: 4792, Num triangles: 9580
Writing MCbrain.smesh

the end (0.5s)
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Appendix D. Bisect mesh refinement
programs.

As we mentioned in Chapter 6, the bisection algorithm of Rivara and Levin [1992] is at
the present implemented only for 2D version, although it is applied to 3D mesh surfaces,
the bisection is made in the triangle elements of these surfaces the same as the algorithm
is designed in 2D. These scripts are implemented using Matlab, future versions including
3D bisection will be implemented in C.

Since the graphical interface (GUI) of Matlab 6.0 makes the process very slow and
we do not need it now, we recommend that you run Matlab without the GUI:

matlab -nojvm -nosplash

PROGRAM 2DMESH BISECTION: refine mesh.m
Directory: ~martinz/PROJECT_ENST/PROGS/Rivara2D/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: sphere.tri, brain sm.tri

EXAMPLES:

Figure 6.1(a) corresponds to the file sphere.tri, triangle number 1 is marked in light
color only for visual purpose.

Figure 6.1(b) is generated as follows:

ref_trig=refine_mesh(’sphere.tri’,1);
Riding file sphere.tri ...

18 vertices, 32 triangles

MAIN: marking the mesh....done. [Nv=18,Nt=32] [time=0]
MAIN: refining the mesh....done. [Nv=19,Nt=34] [time=0.06]
Writing file spherel.off

Writing file spherel.tri
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The program refine mesh has two input parameters, the TRI mesh file and a vector
with the indices of the triangles to be refined, in this case only number 1. The output is
the mesh already refined in formats TRI and OFF with the same name and an increase
counter, another output is the vector of the indices of the triangles refined in this run.
This is with the purpose to run iteratively the same program as many times as wanted,
and to continue the refinement in the same area if it is needed. Nv = number of vertices
and Nt = number of triangles.

Figure 6.1(c) is generated as follow:

ref_trig2=refine_mesh(’spherel.tri’,ref_trig);

Riding file spherel.tri

19 vertices, 34 triangles

MAIN: marking the mesh....done. [Nv=19,Nt=34] [time=0]
MAIN: refining the mesh....done. [Nv=26,Nt=48] [time=0.44]
Writing file sphere2.off

Writing file sphere2.tri

In this example we refined again the triangles refined in the last run, which indices
are save in ref_trig, instead of only the number one.

Finally, and following the same idea, Figure 6.2(a) corresponds to the file brain_sm.tri.
Figure 6.2(b) is generated by:

rt=refine_mesh(’brain_sm.tri’,1);

Riding file brain_sm.tri

2693 vertices, 998 triangles MAIN:

marking the mesh....done. [Nv=2693,Nt=998] [time=0.33] MAIN:
refining the mesh....done. [Nv=2697,Nt=1006] [time=1.09]
Writing file brain_sml.off

Writing file brain_sml.tri

And Figure 6.2(c) is generated by:

rt2=refine_mesh(’brain_sml.tri’,rt);

Riding file brain_sml.tri

2697 vertices, 1006 triangles MAIN:

marking the mesh....done. [Nv=2697,Nt=1006] [time=0.33] MAIN:
refining the mesh....done. [Nv=2707,Nt=1026] [time=1.75]
Writing file brain_sm2.off

Writing file brain_sm2.tri

76



At the moment in order to refined the mesh, the triangles to be refined have to be
marked by hand (through the vector of indices). This decision should be made depending
on the needs of the simulation problem, for example, by an error tolerance or other
criteria.

7



Appendix E. TETGEN Constrained
Delaunay mesh generation.

Tetgen is a 3D quality tetrahedral mesh generator and Delaunay triangulator. It is
based on the Delaunay method. The goal of Tetgen is to generate tetrahedral meshes for
arbitrary three-dimensional domains that are adapted to various problems of scientific
computing, e.g. Computational Fluid Dynamics, Computational Structural Mechanics,
Computational Electro-Magnetic, Thermal problems and so on.

It is mainly based on the PhD thesis of Jonathan Shewchuk [1997] and on the software
develop by the same person called TRIANGLE which generates 2D meshes (http://www-
2.cs.cmu.edu/~quake/triangle.html). Tetgen follows the same design philosophy as TRI-
ANGLE.

Tetgen can be used as stand alone program, or as C+-+ library to incorporate into
another program. It is available in free GNU source code status, and it can run on any
computer with a C++ compiler, e.g. cc/gcec under Unix/Linux and bee32/msve under
Windows98/NT/2000.

Tetgen can be obtained via http from: <http://tetgen.berlios.de> Author’s address:
<sihang@mail.berlios.de>

Tetgen generates exact Delaunay tetrahedrisations, constrained (conforming) Delau-
nay tetrahedrisations, and quality conforming Delaunay tetrehedrisations. The latter
only generates an almost good mesh with bounded radius-edge ratio. If no command
line switches are specified, your .node input file will be read, and the Delaunay tetra-
hedrisation will be returned in .node and .ele output files (for details on file formats used
by Tetgen look at <http://tetgen.berlios.de/>, or at
~martinz/PROJECT_ENST/PROGS/Tetgen/UserManual.pdf). In this appendix we
will describe only the format we use in our examples (*.smesh).

The command syntax is:

tetgen [-pq__a__AfcngBPNEIOXzS_T__CQVh] input_file

Underscores indicate that numbers may optionally follow certain switches;
do not leave any space between a switch and its numeric parameter.
input_file must be a file with extension .node, or extemnsion .poly if the
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-p switch is used. The formats of these files are described below.
Command Line Switches:

-p Reads a Piecewise Linear Complex (.poly file), which can specify
points, facets, holes, and regional attributes and volume
constrains. Will generate a constrained (conforming) Delaunay
tetrahedrisation fitting the input; or, if -q, or -a is used, a
conforming Delaunay tetrahedrisation. If -p is not used, Tetgen
reads a .node file by default.

-q Quality mesh generation by Jonathan Shewchuk’s[1997] Delaunay
refinement algorithm. Adds points to the mesh to ensure that all
tetrahedra are bounded in specified radius—-edge ratio. The default
radius-edge ratio used is 2, Shewchuk proved the refinement algorithm
is theoretically guarantee to terminate (assuming no small input
angle in the PLC). An alternative minimum radius-edge ratio may be
specified after the ’q’. In practice, the algorithm often succeeds
for minimum radius-edge ratio to 1.1.

-a Imposes a maximum tetrahedra volume. If a number follows the ‘a’, no
tetrahedron will be generated whose volume is larger than that number.
If no number is specified, a .poly file specifies a number of maximum
volume constraint. A .poly file can optionally contain a volume
constraint for each facet-bounded region, thereby enforcing tetrahedron
densities in a first triangulation. You can impose both a fixed volume
constraint and a varying volume constraint by invoking the -a switch
twice, once with and once without a number following. Each volume
specified may include a decimal point.

-A Assigns an additional attribute to each tetrahedron that identifies
what face-bounded region each tetrahedron belongs to. Attributes
are assigned to regions by the .poly file. If a region is not
explicitly marked by the .poly file, tetrahedra in that region are
assigned an attribute of zero. The -A switch has an effect only
when the -p switch is used.

-f Outputs (to a .face file) a list of faces of the tetrahedrisation.

-c Outputs (to a .face file) a list of convex hull faces of the point
set. Note: if you use -f and -c switches together, Tetgen only
generates a convex hull faces file for you.

-n  Outputs (to a .neigh file) a list of tetrahedra neighboring each
tetrahedron.

-g Outputs the volume mesh to (.ele.gid) file and surface mesh to
(.face.gid) file for viewing mesh result with Gid software.
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4

Outputs an Object File Format (.off) file, suitable for

viewing with the Geometry Center’s Geomview package.

No boundary markers in the output .node, .poly, and .face output
files.

No output .poly file. Saves disk space.

No output .node file. Saves disk space.

No output .ele file. Saves disk space.

No iteration numbers. Suppresses the output of .node and .poly

files, so your input files won’t be overwritten. (If your input is

a .poly file only, a .node file will be written.) Shouldn’t be used
with the -q, or -a switch if you are using a .node file for input,
because no .node file will be written, so there will be no record

of any added points.

No holes. Ignores the holes in the .poly file.

No exact arithmetic. Normally, Tetgen uses approximate floating-point
arithmetic for certain tests. In some circumstances the inexact tests
are not accurate enough. Exact arithmetic may increase the robustness
of the algorithms, despite floating-point round off error. Use exact
arithmetic will cause a small lower in speed but create the possibility
valid mesh when approximate arithmetic failed. The exact arithmetic
package used is written by Jonathan Shewchuk [1996].

Numbers all items starting from zero (rather than one). Note that
this switch is normally overridden by the value used to number the
first point of the input .node or .poly file. However, this switch
is useful when calling Tetgen from another program.

Specifies the maximum number of Steiner points (points that are not
in the input, but are added to meet the constrains of minimum
radius-edge ratio and maximum volume). The default is to allow an
unlimited number. If you specify this switch with no number after it,
the limit is set to zero. Tetgen always adds points at segment
intersections, even if it needs to use more points than the limit

you set. Tetgen by default inserts segments by splitting, it

always adds enough points to ensure that all the segments appear in
the tetrahedrisation, again ignoring the limit. Be forewarned that
the -5 switch may result in a conforming tetrahedrisation that is not
truly Delaunay, because Tetgen may be forced to stop adding

points when the mesh is in a state where a segment or subface is
non-Delaunay and needs to be split. If so, Tetgen will print a warning.
Specifies the tolerance for round-to-zero. Default Tetgen use a
tolerance le-12.

Check the consistency of the final mesh. Uses exact arithmetic for
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checking, even if the -X switch is used. Useful if you suspect
Tetgen is buggy.

-Q Quiet: Suppresses all explanation of what Tetgen is doing, unless
an error ocCcurs.

-V Verbose: Gives detailed information about what Tetgen is doing.
Add more ‘V’s for increasing amount of detail. ‘-V’ gives
information on algorithmic progress and more detailed statistics.
‘-VV’ gives point-by-point details, and will print so much that
Triangle will run much more slowly. ‘-VVV’ gives information only
a debugger could love.

-h Help: Displays a detail descriptions on Command Line Switches.

For the particular case of generating volume meshes of the head tissues, we need to
generate first the surface meshes of the volumes before running Tetgen.

Once this surfaces are generated, they need to be in .smesh format in order to be
use as an input for Tetgen. We will describe briefly the .smesh format and show the
examples of how to use Tetgen in order to obtain the volume meshes shown in Chapter 6
(see Appendix C to find a program to change surface .TRI format to .SMESH format).

.smesh file format

First line: <# of points> <dimension (must be 3)> <# of attributes>
<# of boundary markers (0 or 1)>

Following lines: <point #> <x> <y> <z> [attributes] [boundary marker]
One line: <# of facets> <# of boundary markers (0 or 1)>
Following lines: <# of facet’s vertices> <endpointl> <endpoint2>...

[boundary marker]

One line: <# of holes>
Following lines: <hole #> <x> <y> <z>

Optional line: <# of regional attributes and/or volume constraints>
Optional following lines: <constraint #> <x> <y> <z> <attrib> <max volume>
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EXAMPLE: Sample .smesh file describing the surface of a cylinder.
# cylinder.smesh file

# Nodes section

# 640 points in 3D, no attributes, no boundary marker.
640 3 0 0

109.833312988281 -16.779541015625 0
105.925262451172 15.4060974121094 0

94 .4282531738281 45.7212219238281 0
76.0104370117187 72.4040374755859 0
51.7422180175781 93.90380859375 0 ...

a D W=

# Facets section
# 1204 facets, no boundary markers
1204 0

495 584 520
561 543 554
2271

28 27 2

29 2 3

29 28 2

4 29 3

30 29 4

3145

31 30 4 ...

W wwwwwwwwow

+H*

Holes section
# There is no hole in cylinder 0

# Region section
# No region be defined 0

EXAMPLE: To generate the volume mesh if this cylinder using Tetgen.
tetgen -p cylinder.smesh

Reads the surface mesh file from cylinder.smesh file, compute constrained (conforming)
Delaunay tetrahedralisation of this surface mesh and write results to object.1.node and
object.1l.ele. To generate the output to be able to display with Geomview then:

tetgen -pg cylinder.smesh.
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How to generate the examples shown in Figures 6.3
and 6.47

PROGRAM: tetgen.cpp
Directory: ~martinz/PROJECT_ENST/PROGS/Tetgen/bin/
Sample files directory: ~martinz/PROJECT_ENST/EXAMPLES/

Sample files names: one_sphere.smesh, two_.smesh

In Figure 6.3 we use only one sphere surface (only one material or tissue), whereas in
Figure 6.4 we use two concentric surface spheres (two different material or tissues).

Figure 6.3(a) shows Delaunay tetrahedral mesh generated as:

tetgen -qpgVC one_sphere.smesh
where one_sphere.smesh is the surface mesh of a sphere, —-q generates a mesh with the
default value of radius-edge ratio (2), -p to read instead the .poly file the .smesh file, and
generates a conforming Delaunay mesh (using together with -q), -g generates the output
file .off to display with Geomview and a .gid file to display with Gid, -V verbose and -C
checks for consistency. It generates the following output files:
one_sphere.1.node
one_sphere.1l.ele
one_sphere.l.ele.gid
one_sphere.1l.face.gid
one_sphere.1.off

Figure 6.3(b) shows a constrain Delaunay tetrahedral mesh generated as:

tetgen -ql1.14a3000gVC one_sphere.1.node
where one_sphere.1.node is the .node file generated from the last example, —q generates
a mesh with a value of radius-edge ratio of 1.14, -a imposes a maximum tetrahedron
volume of 3000, -g generates the output file .off to display with Geomview and a .gid file
to display with Gid, -V verbose and -C checks for consistency. It generates the following
output files:
one_sphere.2.node
one_sphere.2.ele
one_sphere.2.ele.gid
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one_sphere.2.face.gid
one_sphere.2.off

Figure 6.4(a) shows Delaunay tetrahedral mesh generated as:

tetgen -gVC two_sphere.smesh
where two_sphere.smesh is the surface meshes of two concentric spheres, it generates a
Delaunay mesh for both material using the default values, -g generates the output file
.off to display with Geomview and a .gid file to display with Gid, -V verbose and -C
checks for consistency. It generates the following output files:
two_sphere.1.node

two_sphere.1l.ele
two_sphere.1l.ele.gid
two_sphere.1.face.gid
two_sphere.1.o0ff

Figure 6.4(b) shows a constrain Delaunay tetrahedral mesh generated as:

tetgen -pql.8a100A1a100A0XgVC two_sphere.smesh
where two_sphere.smesh is the surface mesh of two concentric spheres, —q generates a
mesh with a value of radius-edge ratio of 1.18 for both materials, —a imposes a maximum
tetrahedron volume of 100, A1 for the attribute 1 or material 1, —a imposes a maximum
tetrahedron volume of 100, A0 for the attribute 0 or material 0, X use exact arithmetic,
-g generates the output file .off to display with Geomview and a .gid file to display with
Gid, -V verbose and -C checks for consistency. It generates the following output files:
two_sphere.1.node

two_sphere.1l.ele
two_sphere.1l.ele.gid
two_sphere.1.face.gid
two_sphere.l.off

For any other application of Tetgen, please consult the user manual at:
~martinz/PROJECT_ENST/PROGS/Tetgen/UserManual.pdf
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