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Abstract - In this paper, characterization of mine
detection sensors in terms of belief functions and
their fusion are presented. Need for fusion of mine
detection sensors is discussed, and reasons for
choosing Dempster-Shafer framework are pointed
out, taking into account specificity and sensitivity
of the problem. This work is done in the scope of
the HUDEM' project, where three promising and
complementary sensors are under analysis. These
sensors are presented, and detail analysis is per-
formed in case of fusing the data from them. A
way for including in the model influence of various
Jactors on sensors and their results is discussed as
well and will be further analyzed in the future. The
application of the approach proposed in this paper is
illustrated on the frequent case of detecting metallic
objects, but the possibility for modifying it to some
other situations exists.

Keywords: humanitarian mine detection, sensor fu-
sion, Dempster-Shafer method, mass assignment, dis-
counting factors.

1 Introduction

Humanitarian mine detection is a very sensitive and,
unfortunately, still unsolved problem. There are sev-
eral reasons for that, and among them the following
three are the main ones [14}:

e nature is very imaginative and creative, placing
an endless number of obstacles, i.e. environmental
factors, on a deminer’s way, such as rocks, ferrous
soils, moisture, etc.; that causes a lot of problems
in predicting possible factors and their influence
on mine detector performance;

e mine manufacturers do not lack imagination and
creativity either, producing an almost endless va-
riety of features of mines [5], e.g. size, composi-
tion, shape, activation principle etc.; as a result,

'HUDEM (HUmanitarian DEMining) is a technology explo-
ration project on humanitarian demining launched by the Bel-
gian Minister of Defense with funding provided by his Depart-
ment, the Ministry of Foreign Affairs and the State Secretariat
for Development Aid.
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mine detectors always go at least one step behind
the mine producers, and, furthermore, the solu-
tions for detection are often too big, expensive or
slow to be useful in real situations;

e there is a lack of funding for (humanitarian) mine
detection projects.

The first two points given above explain also why it
is not possible to use just one sensor while trying to
solve the problem: there is no single sensor that can
reach necessarily high detection rate in all possible sce-
narios. A sensor that works well in one scenario, for
one type of soil, moisture, temperature, burial depth,
mine material, size, shape, fails to detect mines in a
different scenario. Therefore, a lot of effort has been
made in order to take the best from several complemen-
tary sensors. One of the most promising combinations
in that sense is: an imaging metal detector (MD), a
ground penetrating radar (GPR) and an infrared cam-
era (IR).

Furthermore, since reliability and detection capabili-
ties of any sensor are strongly scenario dependent, it
is very important to characterize each of the sensors
that are combined. In other words, ways for model-
ing influence of various factors on sensors and their
results, as well as on results of combination have to
be investigated in detail, with the aim of obtaining fu-
sion results that would be as good as possible for some
concrete scenario.

At this point, another question arises: which
method to use in order to obtain such good results? It
is well-known that there is no universal approach for in-
formation fusion and that its choice should strongly de-
pend on the problem itself {1}, [2], [10], [13]. It should
be pointed out that in this domain of application, we
have to deal with following information:

e the data are basically numerical (images, sensor
measurements);

e they are not numerous enough to allow reliable
statistical learning (as shown through our previous
work [6]);

e they are highly variable depending on the context
and conditions;
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e they do not give precise information on the type
of mine (ambiguity between several types);

e not every possible object can be modeled (nei-
ther mines nor objects that could be confused with
them).

That is why we propose an approach based on belief
functions in the framework of Dempster-Shafer (DS)
theory [9], [12], since in this framework, ignorance,
partial knowledge, uncertainty and ambiguity can be
appropriately modeled. The main motivation for ex-
ploring possibilities of modeling mine detection system
in this framework is to be easily able to include and
model existing knowledge regarding:

e the three mine detection sensors under analysis
(e.g. detection of IR is limited to several centime-
ters below the soil surface in the best case, stan-
dard GPR cannot detect surface-laid and shal-
lowly buried objects, MD can detect just objects
containing metal, etc.),

o well-known mine laying principles (e.g. antiper-
sonnel (AP) landmines?® are usually buried on the
depths up to 25-30 cm, not deeper),

e mines themselves (e.g. around 90% of laid mines
are highly metallic, majority of currently laid
mines around the world are with circular top sur-
face, appearing elliptical in images of these three
sensors in the general case because of some burial
angle, etc.),

e objects that each of these sensors can easily con-
fuse with mines (e.g. stones of adequate size and
shape for IR and GPR sensor, metallic cans for
MD, etc.).

There is another aspect of our ideas that has to be
mentioned. It is known that in humanitarian mine
detection mistakes are not allowed, i.e. the detection
rate has to be as high as possible. We believe that the
approach of combining sensors should surely improve
detection results, but that it is not possible to reach
‘the highest possible level of detection, simply because
it is not possible to predict all the real situations where
mines can be found. Because of that, our idea is to give
to a deminer as much information as possible, starting
from processed data of separate sensors up to a final
conclusion on the basis of that, but the final decision
has to be left to the deminer. Therefore, the resuit
of this DS model should be an ordered list of guesses
what a currently observed object could be, together
‘with confidence in these results.

It should be also pointed out that there is no crite-
rion by which it is possible to say that if it is fulfilled,
‘the object is a mine?, it can be just the opposite, i.e.
to have a criterion that can tell us when an object is

2AP landmines are the problem of h itarian demining, so
that is what is understood under the term “mines” mainly used
in this paper.

3This is the truth for our three sensors, but, apparently, not
in general, e.g. in case of some newer sensors of explosive, such
as NQR. These sensor technologies are not mature yet, so their

(most probably) not a mine. Consequently, our results
tell how expectable is that an object is not a mine, or
that it is either a mine or something else. Although
it may sound as a drawback of the method, it should
not be forgotten that mines should not be missed, so
detecting that something is not a mine and that itis a
mine or something else seems to be the safest approach
in this complex problem.

In the following, some characteristics of MD, GPR
and IR sensors from the mine detection point of view
will be presented. On the basis of that as well as
general ideas for applying the DS approach, explained
above, the appropriate choice of criteria and of respec-
tive mass assignment for each of the sensors will be
discussed, in the case that an object under observa-
tion is metallic. Also, preliminary ideas for including
in the model confidence of sensors in their assessments,
importance of each criterion as well as deminer’s con-
fidence in each of the sensors will be presented, based
on the idea of introducing discounting factors [3], [9],
[11).

2 Characteristics of imaging
MD, GPR and IR sensors

As a general remark, it should be noted that all these
three sensors are assumed to be co-registered (as it is
the case in the practice) in sense that they all refer
to the same area on the ground, so a good informa-
tion about location exists in 2D, while the information
about the third dimension, i.e. depth position of the
object is missing and can be extracted only from in-
formation given by MD and GPR, leading to potential
problems when these two sensors disagree, i.e. either
(at least) one of them is not reliable or they do not
refer to the same object (since they do not sense the
same phenomenon).

2.1 An imaging MD

Metal detectors are one of the oldest and most effi-
cient sensors used in mine detection. As their name
says, they detect all metallic objects, and not mines in
particular, as long as metal content of that object is
larger than a sensitivity threshold of the MD. Different
metal detection technologies exist, but the basic con-
cept is the same and simple: while the detector head
moves above metal, the detector senses a change in the
magnetic field below it. As long as a mine has enough
metal, a MD can be used alone. Of course, mine manu-
facturers are aware of this fact, so more and more mines
with less and less metallic content are produced. On
their behalf, producers of MDs are trying to cope with
that: currently MDs can track less than 1/10 of a gram
of metal at a depth of 10 cm [4], but in that case their
threshold of sensitivity has to be very low, and that will
cause a ot of false alarms as well. Therefore, the other

usefulness is still to be seen. Possibilitics and implications of
including such type of sensors in our model will be analyzed in
the future.
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two sensors are sometimes aimed not to detect mines,
but to lower the number of false alarms. On the other
hand, nowadays, mines even completely without metal
are produced as well, so that case should be analyzed
as well if a detection method should be longer-lasting
one.

Main advantage of this sensor is that it is not influ-
enced by soil moisture and other weather-dependent
factors. The factors that influence quality of mine de-
tection by MDs are:

o metallic objects (debris, cans etc.)- cause a lot of
false alarms;

e ferrous or magnetic soils - cause false alarms;
¢ metal content of a mine - the higher, the better.

A traditional MD has just a sonar signal indicating
the presence of metal on or in the ground. In the last
years, an improvement has been made by converting
this signal to an image. This type of MD, so-called
imaging MD, is under our analysis [15)].

22 A GPR

This type of sensor includes two antennae, a transmit-
ting one and a receiving one. The first antenna emits
an active signal through the ground, and the second
one receives the signal reflected from any buried ob-
ject of which dielectric constant differs from the one
of the soil. The main problem of this sensor is soil
moisture, that drastically weakens the signal and lim-
its the burial depth on which mines could be detected.
Also, other buried objects cause increase in number of
false alarms. Standard GPRs have problems in detect-
ing surface laid mines because of strong surface reflec-
tion. Some solutions exist (e.g. ultra-wideband GPR.
or using more than one receiving antenna), but still
are not mature and operable enough to be taken for
sure. Therefore, we could say that factors of influence
on GPR mine detection performances are:

o buried non-dangerous objects - the more resem-
bling to mines in size and shape, the worse;

e burial angle - affects the appearance (size and the
shape) of an object in the image* ;

e moisture - wetter the soil, weaker the signal;

o difference in the permittivity between an object (a
mine) and the soil;

e burial depth - the larger, the worse - if the soil is
wet, otherwise not (for burial depths of AP mines);
once again, surface laid and shallow buried mines
are problematic for most GPRs, i.e. dependence of
performance of GPR on burial depth is not mono-
tonic.

4We restrict our analysis on imaging GPRs [8].

2.3 AnlIR

The principle behind the IR mine detection is that a
metallic mine conducts and radiates heat at a different
rate than a plastic mine or the soil and vegetation and
that they all have different heat capacity. Main limi-
tations of this sensor arise from the fact that it needs
solar loading for developing passive heat signature. It
means that trees, buildings, clouds limit possibilities of
mine detection because they lower solar loading; rain
or snow even completely eliminate solar loading. Fur-
thermore, any other object that resembles to a mine
(cans, rocks etc.) with its own thermal signature eas-
ily causes false alarms. Also, IR sensor cannot “see”
mines that are below solid objects such as foliage. Fi-
nally, if all the problems mentioned above are avoided,
the daily evolution of thermal signatures [6] cannot be
skipped, i.e. the fact that because a mine and its sur-
roundings receive solar loading at different rates, there
are periods in a day when thermal contrast between a
mine and its environment reaches maximum, and other
periods when a mine and its surroundings are on the
same temperature (so the mine is “IR invisible”). Pre-
cise times when these events occur depend on the time
of the year, place on the Earth, i.e. the inclination of
the sun etc.

To summarize, following factors influence the de-
tectability (either improving it or lowering it) of IR
sensors [6]:

e non-dangerous objects - the more resembling to
mines in size and shape, the worse;

o burial angle - affects the appearance (size and the
shape) of an object in the image;

e moisture - wetter the soil, weaker the signal;

e time of the day - daily evolution of the thermal
contrast;

o burial depth - the deeper, the worse;
e precipitation - the stronger and longer, the worse;

o difference in thermal emissivity, conduction and
heat capacity between a mine and the soil;

e obscuring objects - above a mine, on the surface
or close to it (a very often example is vegetation -
the higher and denser, the worse).

3 Choice of criteria and resulting
mass assignments

The most usual case in mine detection reality is when
an observed object has a high metallic content, caus-
ing a strong response of a MD. Therefore, that is the
first case we decide to analyze and model in this frame-
work, hoping that it could be a good basis for further
modifications and generalization to other cases.

If all three sensors are (equally) reliable and if a MD
claims that the object is highly metallic, the following
classes of objects can exist:
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¢ MR (metallic mine of regular, i.e. circular or more
generally - elliptical, shape),

e MI (metallic mine of irregular shape),

e FR (friendly, i.e. non-dangerous object of regular
shape) and

e FI (friendly object of irregular shape).

They create the frame of discernment ©. Furthermore,
the criteria that can give the most information about
the real identity of the object in this case, for our
knowledge, are the following:

e for each of the three sensors:

1. ellipse fitting, that is, how well the shape of
the object fits in an ellipse, assigning masses
to subsets {MR, FR}, {MI, FI}, ©;

2. shape elongation, again giving masses to
{MR, FR}, {M], FI}, ©;

3. area/size, by which information about ex-
pectable size range of mines is included, as-
signing mass mainly to © within that range,
and to {FR, FI} elsewhere;

o for MD: burial depth, including the knowledge
about the depths where mines can be expected,
50, again, assigning masses to © and {FR, FI};

e for GPR:

1. depth dimension of the object, that gives,
similarly as information about area, masses
to {FR, FI} and to ©;

2. comparison of the depth position of metal de-
tected by MD and the object depth interval
sensed by GPR; if they are in accordance,
masses are assigned mainly to ©, if they are
not, a largest part of masses should go to
subset {FR, FI}.

The masses are defined as functions depending on mea-
sure of ellipticity, elongation factor, area, depth, re-
spectively. They are detailed in [7]; see also example
in Figure 1.

The measures that can be extracted from the sensors
do not provide, in general, information about classes of
interest individually. For instance, elongation provides
information about shape, but not about the nature of
the object, so it cannot disambiguate between mines
and friendly objects. Similar observations can be made
for the other measures. Because of this, the focal ele-
ments of the proposed model are generally disjunctions
of hypotheses, and not singletons of the set of discern-
ment. This is possible in the context of belief function
theory, which is another advantage of this choice.

4 Discounting factors

As previously pointed out, behavior of each of the three
sensors is strongly scenario-dependent, referring to:

e quality of the acquired data, that influences as-
sessment of sensors when judging about some cri-
terion, importance of each criterion and confidence
in that sensor;

o reliability /detection ability of each of the sensors
under particular weather conditions, type of soil
etc, that affects again confidence in that sensor;

types of objects under analysis, influencing impor-
tance of each of the criteria, etc.

That means that there should be a way to include influ-
ence of various factors (environmental conditions, data
quality etc.) on the obtained results; since it would be
very difficult to model individually each environmental
factor and its influence, we propose to include them in
one discounting factor. Furthermore, we should allow
a deminer to have a possibility to give his own opin-
ion about reliability of each of the sensors within a
concrete scenario, i.e. his confidence in each of them.
Finally, depending on a concrete situation, some crite-
ria could become more important (and reliable), others
less. These are main reasons for including discounting
factors [3], [9], [11] in our model.

Discounting factors, d;j, consist of three types of
parameters:

e gi; - confidence level of sensor j in its assessment
when judging criterion i (0 - not confident at all,
1 - completely confident);

o b; - level of importance of criterion i (1 - very low,
3 - very high);

e 3; - deminer’s confidence into sensor j’s opinion,

where i € {a,c,d,e, f,h}, j € {G,I,M}, with: a -
area, ¢ - comparison of depth information from MD
and GPR, d - depth, e - elongation, f - ellipse fitting,
h - depth dimension of an object, G - GPR, I - IR, M
- MD.

4.1 First ideas for estimating g;;

4.1.1 Area/size for IR and GPR, i.e. g,; and
9aG

Level g,1, i.e. confidence of IR sensor in its assess-
ment when judging the area criterion, we define as a
function of agreement in area between this sensor and
area extracted by MD. Namely, in one of the starting
steps, we decide on the basis of the strength of signal
of MD (or/and the area detected by it) which case we
analyze. That means that before this moment, we al-
ready decided, on the basis of this MD signal, that we
analyze the case of high metal content (i.e. metallic)
object. What is also done before this moment is that,
since IR does not give information about distance from
it and the observed object, the area extracted by this
sensor is estimated on the basis of the depth informa-
tion extracted by MD. At this point, we can have two
cases:
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o (area detected by MD) = (area detected by IR); in
ideal case of a high metal content object these two
areas would be equal, but this equality is under-
stood here with some allowed estimated tolerance
because of two reasons:

1. measurements are imprecise, and therefore
we cannot expect a strict equality;

2. IR and MD do not measure the same objects
(the same phenomenon): if a metallic mine
is composed of two different parts, A and B,
where A is metallic, B is not, but is seen by
IR (e.g.: it is a metallic mine with plastic
handles, where, IR would see a slightly larger
area than MD, in ideal case), then IR will
measure size(A)+size(B) while MD just gives
information about size(A);

in this case, we propose to calculate g,r as:

_ min(MDarea,IRarea)
~ max(MD area,IRarea)’

Gar

(so that maximum value of this factor does not
exceed 1 in case that area of IR is slightly smaller
than the one of MD);

e otherwise, i.e. areas detected by MD and IR are
(quite) different (in either sense); the possibility
that it is a low-metal content object should not ex-
ist at this level since this should have been checked
before, i.e. at this point, this possibility is ex-
cluded; what remains is that these two sensors do
not refer to the same object®; therefore, in the
next step, these two areas are compared with area
information extracted by the third sensor, GPR;
if GPR area is similar to one of the previous two,
then that sensor and GPR are clustered together,
and the third one separately, and our analysis
“switches” to the case where GPR and that sensor
with similar area refer to the same object, while
the third one refers to another; if there is no sim-
ilarity in areas between these three sensors, the
case when they all refer to different objects has to
be further analyzed.

The same reasoning as above can be applied for the
calculation of g,¢, that is, confidence level of GPR in
its assessment when judging area criterion: it can be
again compared with MD area, etc.

4.1.2 Ellipse fitting for all three sensors (g;s,
941Gy 91m)

Confidence of IR sensor in its estimation of masses
regarding ellipse fitting criterion is a function of the
shape itself (and of ellipse fitting criterion and mass
assignments as well), that is, the larger the separation
(mass difference) between regular and irregular set, the
larger the confidence in the assessment; for example:

gs1 = (mgr{MR,FR} — ms{MI,FI}).
5This possibility can still exist in the previous case as well,

but it is not analyzed for that case since it will be further checked
in the future work, through conflicts between sensors.

Estimation of the confidence levels for this criterion for
the other two sensors is defined similarly, i.e.:

956 = (mse{MR,FR} —myc{MI, FI})?,
9rm = (mgm{MR,FR} —mgp{MI,FI})%.

4.1.3 Elongation (g, geGy geM)

Similarly to the previous criterion, we define the con-
fidence level in estimation of elongation as function of
how well regular and irregular subsets are distinguished
by the chosen criterion:

ger = (mes{MR, FR} — m.{MI, FI})?,

gec = (mec{MR, FR} — m.c{MI,FI})?,
gem = (mepmr {MR, FR} — m.p{MI, FI})2.

4.1.4 Comparison of depth information of
GPR and MD (g.c) and burial depth by
MD (gam)

At this point, results of two sensors are compared, and
it is not known for sure which one is more reliable (we
have deminer’s belief about that, but this information
is already directly included in calculation of discount-
ing factors).

As already mentioned, this criterion assigns masses
to the subset of friendly objects {FR, FI} and to the
full set in function of agreement in depth location ex-
tracted by these two sensors, in sense that if they agree
well, mass is given mainly to the full set (such an object
can be anything) and if not, it is assigned to friendly
objects (i.e. such an object is quite surely not a mine or
at least one of the two sensors is not reliable). These
mass assignments are illustrated in the right side of
Fig. 1, where z is the depth position detected by MD,
measured from the top level detected by GPR, and d
is the depth dimension sensed by GPR. -
Consequently, confidence level of GPR in its assess-
ment regarding this criterion is a function of the mass
given to a full set, i.e. to how well these two sensors
agree - if they are in agreement, we can believe that
both sensors are quite reliable and vice versa. Addi-
tionally, this confidence depends on the depth infor-
mation as well; namely, a stronger confidence to this
comparison is put if the depth is within the range that
is detectable by GPR - we should not give too high
confidence in this assessment if the depth is very shal-
low (since standard GPR does not work well in that
range), or if it is too large. Therefore, this confidence
level is defined as:

9cc = mcc{O} - f(depth),

where function f(depth) has a shape given in the left
side of Fig. 1.

Accordingly, since it is not known which sensor is
more reliable, depth estimation of MD has to be the
function of its agreement with GPR, i.e.:

gam = mec{O}.
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10 20
depth [cm])

Figure 1: Confidence in GPR in function of depth es-
timated by MD (left), mass assignments for the depth
comparison criterion (right)

4.1.5 Depth dimension by GPR, gi¢

We propose to define this confidence level also as a
function of the depth information (again as in Fig.
1), since GPR is not reliable neither for surface-laid
or shallowly buried object nor for very deeply buried
ones (how deep it can go, strongly depends on moisture
level, so it could be later modified to include this infor-
mation, if we will be able to measure this information).
Accordingly, it is calculated as:

gng = f(depth).

4.1.6 Area/size by MD (g.m)

The confidence of MD in its assessment when judging
about area of the object is defined as a function of
the strength of the signal, or, of the maximum value of
pixels in its image response in comparison to the image

scale:
max response

GaM = — .
image scale

4.2 What about s; 7

These coefficients, in general, depend on factors that
influence on reliability of sensors, such as environmen-
tal conditions, i.e. time of the day, moisture etc. Since
we do not know whether we will have collateral data
and which of them, at this moment we give full confi-
dence to a deminer’s opinion about reliability of sen-
sors. We should be aware that this confidence will be
probably biased by a deminer’s trust in each of the
sensors, either because he is more familiar with some
of them than with some others, or because of his per-
sonal opinion about reliability of a particular sensor
in the current scenario (especially for parameters that
are difficult to quantify, e.g. how dense and high the
vegetation is, how good the weather is, etc.).

By this idea, a deminer will give us, for each of the
sensors, numbers describing his belief in reliability of
that sensor, where the higher the number, the larger
the confidence in that sensor. Therefore, if two sensors
have the same confidence number, that means that the
deminer’s belief is that they are approximately equally
reliable in that scenario. Deminer, of course, does not
have to use the full range, i.e. the full scale, if there
is no completely reliable or unreliable sensor. Also,
since people do not think necessarily on the same way,

some deminers probably prefer rough scales (e.g. from
1 to 3), and others more subtle ones (from 1 to 10,
for example). Because of that, the minimum of his
scale is restricted to 1, for the sake of simplicity, but
the deminer is allowed to choose the maximum him-
self. Of course, the values he gives have to be rescaled.
Therefore, besides his numbers about trust in each of
the sensors, he will give his scale as well. Including
this possibility to the model means that we have to be
careful while comparing results obtained by different
scales (e.g. if two deminers with different choices of
scale observe the same scenario), especially if we want
to compare resulting masses after combination. On the
other hand, the relationship between masses obtained
by one scale should not be disturbed by choosing an-
other one; it can be expected that indeed this will be
preserved, and that is the most important thing for fur-
ther analysis of results, i.e. creating an ordered list of
guesses about the true identity of an observed object.

4.3 How to estimate b; ?

For these coefficients, that represent importance of cri-
teria, there are several open possibilities, that will be
further investigated in the future work:

o their choice can be again left to a deminer (how
important for him is each of the criteria), and this
solution is applied in the paper;

o their values can be preset for each of the pre-
dictable cases, i.e. they can depend only on the
currently explored case (e.g. metallic object, low-
metal content object etc.);

o they can be at the beginning chosen all the same,
and after combination of masses, these coefficients
can be tuned depending on which subset has the
highest mass (e.g. if the first guess is that it is
a regularly shaped metallic mine, coefficients will
be adjusted so that the criteria that give more in-
formation about this type of object become more
important); then, combination with these modifi-
cations can be performed, and if the results are
consistent, we can be more confident in them; if
not, we can decrease the confidence in the first
subset, and perform the same analysis for the sub-
set with the second highest mass, etc.; possibility
that this way induces some bias should be inves-
tigated as well.

4.4 Finally - how to calculate d;; ?

For the moment, we choose a very simple function of
the three types of coefficients discussed above, where
each factor could be used in successive discounting, and
then the global factor would be a product, such as:

dij =1 = gij - (k1 - 85 + L) (k2 - b; + 12),
where k,, and I, m = 1,2, are coefficients that, obvi-

ously, have to be tuned. That is a serious task that will
be done in the future work, through a careful study of
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their influence, if they are all necessary or not. This
will be done not only by comparing resulting discount-
ing factors, but also the influence on resulting masses
and decisions. For the beginning, the simplest is to
take:

L=1=0,
kl = ’
Sscale

1
ko = s
2 b-cale

i.e. to calculate the global discounting as:

S b;
dij=1-g;j - ——- -

Sscale

?
blcnle

where Sgcate and bgeqte are scales for s and b parame-
ters, respectively.

We expect that after having gathered the data from
all three sensors it will be possible to finally adjust
all these parameters, as well as previously explained
mass assignments per criterion. Using these coeffi-
cients, masses assigned for each of the sensors and for
each criterion are modified in the following way:

e for some subset A # ©, new masses, mijngw (4),
are computed from the initial ones, m;;(A), as:

miinew (4) = (1~ dij) - mi;(4);
o for full set:

miinew(©) = (1 — dij) - mi;(©) + ds;.

5 TFirst results

Once the masses are calculated and discounted for each
criterion and for each sensor, we can combine them us-
ing the well-known DS conjunctive rule [9] in unnor-
malized form, in order to preserve mass of empty set
(i.e. strength of conflict, as will be explained soon):

mA)= X
i Jj
AiNB;=A

my(A;) - ma(B;),

where m; and m; are basic mass assignments, and
their focal elements are A,, A2, ... Ax and By, By,
... By, respectively.

Figure 2: Test images

We can imagine four cases; for each of them, ob-
tained (unnormalized) masses are given in Table 1:

e case 1 - an elliptical metallic object given in Fig. 2
is seen approximately equally by all three sensors
and it is buried on a depth where mines can be
expected, its area is similar to mines, its depth
dimension is again as for mines, and MD and GPR
agree about its depth position; discounting is not
included;

e case 2 - it is similar to the first one, but with dis-
counting factors, where just factors for confidence
levels are included, i.e. it is assumed that all sen-
sors are highly reliable and that all criteria are
equally important;

e case 3 - MD and GPR behave as in the previ-
ous two cases, i.e. detect some moderately buried
object, but performance of IR sensor is drastically
influenced by some factors; because of that, its de-
tection is limited to the surface (e.g. if vegetation
is high and dense), where it registers some object
of the similar area as the object that other two
sensors detect, but of the X-shape (as in the right
side of Fig.2); there is no discounting, i.e. a dem-
iner cannot express his doubts about reliability of
IR;

e case 4 - discounting is included in the previous
case, and a deminer claims that the scale of reli-
ability of sensors is 5, where he gives the highest
level of confidence for GPR and MD, but the low-
est for IR; importance of all criteria remains equal.

Table 1: Resulting masses after combination for four
analyzed cases

Cases
| Masses case ] | case2 | case3 | case4
| m{ FR} 0.0585 | 0.0558 | 0.0127 0.042
m{FI} 1.6e-07 | 9.6e-05 | 8.8¢-06 | 3.9e-04
m{FR,FI} | 1.8e-12 | 9.5e-05 | 6.9e-13 | 5.9e-04
m{MR,FR} | 0.9279 | 0.9015 | 0.2021 [ 0.899
m{MLFI] | 2.5¢-06 | 0.0017 | 1.5e-04 | 0.087
m{© 2.8e-11 | 0.0015 | 1.1e-11 | 0.0096
m{Q 0.0135 | 0.0393 | 0.785 | 0.0394

As can be seen, there is no important change in the
results for the cases 1 and 2, indicating that under al-
most ideal conditions, discounting factors do not influ-
ence results to a great extent. On the other hand, the
case 3 (i.e. without discounting) has a high degree of
conflict between sensors (high value of mass of empty
set before normalization), indicating that something
is wrong with some of the sensors?; this information
would have been lost if DS rule in normalized form were
applied (i.e. masses were divided by (1-m{@})). After
discounting (case 4), the value of conflict is suppressed
to a great extent, thanks to the fact that influence of
the sensor that is not reliable is heavily discounted.

8«Open-world assumption” (something outside the frame of
discernment happened) is justification for keeping masses un-
normalized.
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Therefore, even if in some of previous steps it is not
noticed that these sensors do not refer to the same ob-
ject, i.e. they are not clustered in two groups, behavior
of the system and, most importantly, final result can be
significantly improved by introducing confidence fac-
tors and allowing to a deminer a possibility to express
his opinion about reliability of each of the sensors.

Several possibilities for interpreting these results ex-

ist, depending mainly on the way the subsets contain-
ing mines (and something else) are treated. We choose
the cautious approach, where such subsets are treated
as a potential danger. Indeed, in all these examples
the object under observation is likely to be a mine (or
something that resembles to it), and the results show
the same, giving a high mass to a subset of regular
shapes, containing mines.
These are just a few examples of obtained results,
showing that our model behaves in accordance with
what can be expected in reality, i.e. these results are
promising.

6 Conclusion

In this paper, reasons and ideas for modeling fusion of
mine detection sensors within the DS framework are
given. The main advantage of this approach is its
possibility of including existing knowledge about the
problem. On the basis of this knowledge, the choice
of criteria for the very frequent problem of detection
of large metallic objects is presented. Furthermore, a
way is shown for including discounting factors that can
model influence of environmental conditions, i.e. of a
concrete scenario through deminer’s confidence in re-
liability of each of the sensors, relative importance of
criteria, as well as confidence of sensors in their as-
sessment when judging about some criterion. Finally,
first results of fusion with included discounting are ob-
tained, that seem to be very promising. We expect
that these masses will become even more realistic and
results even more useful once the trials are done, from
which it should be possible to poo!l these preliminary
mass assignments and discounting factors.

In the future work, possibilities of generalizing this
model to other cases will be investigated, ways to add
discounting factors will be further tested, and ideas to
modify the model by allowing the possibility that sen-
sors do not refer to the same object will be analyzed.
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