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Abstract— Relaxation labeling is an iterative scheme for
parallel information fusion forcing neighborhood constraint
satisfaction. In the seminal paper of Rosenfeld et.al.[l{ the
authors discussed various models for relaxation labeling:
discrete, probabilistic, non-linear probabilistic and fuzzy.
Since then many new relaxation labeling schemes have been
proposed only a few of which are incorporating methodolo-
gies from fuzzy set theory. It is shown that this is partly
due to the traditional, but questionable classification of re-
laxation labeling schemes. A new classification is intro-
duced which clarifies the role of fuzzy relaxation labeling.
The new classification scheme is complemented by the in-
troduction of a whole range of new fuzzy relaxation oper-
ators.

I. INTRODUCTION

Many different problems can be re-stated as the prob-
lem of assigning labels to objects given some relational
constraints. Such problems can be tackled within the
framework of (continuous) relaxation labeling, in which
we have:

» a set O of objects i.

o a set A; of possible labels A for each object 1.

« an assignment weight p;» € [0,1] for each possible

labeling (i, A).

» support values Rijy, measuring the support (either
positive or negative) for label A at object i aris-
ing from label p at object j, where it is under-
stood that ¢ # j. Whenever R;;, is symmetric, i.e.
Rij»p = Rjiun, it can be interpreted to measure the
compatibility of the labelings (i, A) and (j, i2).

Continuous relaxation labeling {2] is an iterative scheme
that updates the assignment weights p;) according to the
information contained in the set of compatibility weights
Rij», and the current assignment weights. The aim
is to sieve out assignments that are hardly compatible
and to promote highly compatible assignments by reduc-
ing/increasing the assignment weights properly. The dis-
crete formulation of relaxation labeling can be considered
as the limiting case p;x € {0,1}, R;jx, € {0,1}.

Subsequently we denote by p the vector of all assign-
ment weights p;x, by R the set of all support weights
Rijx, and by p; the vector of assignment weights for one
particular object ¢ and all its possible labelings, that is
Pi == (Pi1, -, Dim; ) With m; = card(A;). In addition to the
introduction of support weights R;jy, with j # i we may
also use support weights R;;», that encode how strongly
two labelings (¢, X) and (i, u) of the same object i support
each other. This quantity becomes especially interesting
as soon as more than one labeling of a single object ¢ may
be assigned a high assignment weight.

We will usually assume R;j», € [—1,1] for convenience.
When discussing various approaches we will also mention
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the range of values allowed for Rijx,. If Rijx, € [-1,1]
then R;j», = —1 stands for total conflict while R;jy, =
+1 signifies total support. R;jx, = 0 indicates indiffer-
ence or no influence. If Rj;5, € [0,1] then usually low
values indicate low support (either because of conflict or
because of indifference) and high values indicate strong
support.

II. CLASSIFYING RELAXATION SCHEMES

Relaxation schemes fall into two broad classes: meth-
ods which incorporate a normalization constraint on the
assignment weights, requiring them to sum to one for each
object separately:

Zpi)\ =1, foralli=1,..,n (1)
A=1

with n = card(0O),m; = card(A;). And, on the other
hand, relaxation models that do not incorporate this con-
straint.

Following the terminology in [1},[3] the unanimous tra-
ditional classification of relaxation schemes equates all
fuzzy models with the second class of models where there
is no normalization congtraint. Simultaneously one can
find in the literature the inclination to call approaches of
the first class “probabilistic models”, again starting with
the seminal paper of Rosenfeld [1].

In this paper we propose the following alternative ter-
minology that leads to a reconsideration of the domain of
fuzzy relaxation models:

e We call all approaches incorporating constraint (1)
normalized continuous relaxzation models or for short
normalized (relazation) models.

o Those that do not incorporate constraint (1) are
called non-normalized continuous relazation models
or for short non-normalized (relazation) models.

We will call a relaxation model

e a fuzzy model if fuzzy information and/or fuzzy fu-
sion operations are used in establishing the relaxation
scheme.

o a probabilistic model if arguments based on Bayesian
reasoning are used to establish the relaxation scheme.

e an optimization model if optimization of a functional
is used to derive the scheme.

Note that the domain of optimization models might over-
lap with the set of fuzzy models and probabilistic models.

It is clear that probabilistic models necessarily belong to
the class of normalized models. The latter class, however,
also contains optimization models, ad-hoc models, and, as
will be shown in this paper: normalized fuzzy models.
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Since traditional terminology equates fuzzy models with
non-normalized models it may appear natural that all non-
normalized models are fuzzy models. However, the impli-
cation does not hold the other way round. Fuzzy models
are not defined through a normalization constraint but
through the use of fuzzy information and/or fuzzy fusion
operations.

There is also the issue of interpretation involved: nor-
malized models often assume that each object should get
one label but we do not know which one. While this is a
common interpretation of probability distributions we are
not enforced to restrict normalization only to the regime of
Bayesian reasoning. In fuzzy models we usually interpret
the assignment weights as degrees to which a particular
object assumes a specific label. These degrees of member-
ship to a particular class of labels may be non-normalized
or normalized in the sense of equation (1). If they are
normalized one may interpret the weights as to what per-
centage an object belongs to a specific class ! (e.g. in the
mixed pixel/voxel case).

Within the regime of fuzzy information fusion we may
also interpret assignment weights as confidence values for
specific claims which again can be normalized or non-
normalized. The real distinction must be drawn when
deciding if a method uses fuzzy information or not.

I1I. BAsICS OF RELAXATION LABELING

Relaxation labeling amounts to updating the vector p
using the following iteration scheme:
p*+! = F(p*, R) )
with & denoting the number of the current iteration and p°®
being the initial assignment weights which have been ei-
ther obtained from some other information source or oth-
erwise set to consistent but ad-hoc initial values. The
support coefficients R have to be obtained either from
knowledge about the modeled process or through learn-
ing.

£k=0,1,2,3,....

The geometric structure of the weighted labeling space
follows directly from the definitions of normalized and
non-normalized relaxation. We define

K :={p|0<pn<l, Vi=1,.,n}

and

m;
K':={p|0<pa<1 A D pa=1 Vi=1,,n}
A=1

Let C be the set of corner points of K, i.e. the set of com-
pletely unambiguous labelings. We will write subscripts
) K{ , K7, C; to indicate the restriction of the above con-
cepts to the labelings p;x of a particular object i. Fig. 1
visualizes the spaces K/ and K™ in the simple case of one
object i = 1 and three labels A;..A3. K" is the simplex
with corner point set C = {(0,0,1);(0,1,0);(1,0,0)}. In
the case of n-objects, m-labels K™ consists of n different
m — 1 dimensional simplexes. For non-normalized relax-
ation models (1) is not valid and the space K7 of possible

1Note that the same interpretation is used in the FCM-algorithms.

assignment values counsists of the n different m dimen-
sional unit cubes enclosing the above simplexes.

object i

Fig. 1.  Ezemplary locus of possible assignment weights p; =
(Pirng :Pixg s Ping) for one object i in normalized relazation.

There are a few desirable common sense characteristics
every relaxation operator F' should possess [1]. Figure
2 summarizes some important properties of F' in tabular
form. In that figure “+” means p;) should increase, “—”
means that it should decrease, and “0” that it should re-
main relatively unchanged. For example, the assignment
weight p;x should be increased (“+4”) if another object j
has a high assignment weight for a label y, ie. pj;, is
high, and the support R;;, for (i,A) from (4, ) is high
too. Thus the signs indicate the influence of particular
situations on Ap;y := piF' — pk . The total change Ap;»
results from fusing the individual influences exerted by
each labeling (j, u).

Support for (i,A) from (j,11)

Rijau
App, High Low:
High + -
P
Low 0 0

Fig. 2. Table of qualitative rules for the change in ‘assignment
weight Ap; = pf;' - p:& of the labeling (i, \) induced by the
labeling (4, ).

IV. NORMALIZED MODELS

In this section a few, representative, normalized relax-
ation models will be reviewed (see [4] for an extensive
survey). The first normalized model which is still widely
used has been proposed by Rosenfeld [1], who has termed
it “non-linear probabilistic model”. In light of the termi-
nology established in section II the model belongs to the
class of optimization models or ad-hoc models depending
on the properties of R.

Computation consists of two major steps. The first one

computes
n mj

Qix = Z z BijauPin

J#Fi p=1

which is interpreted to give the total support for (¢, A)
from all other objects j. Then new assignment values

3)
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are defined to replace the current values according to the

formula . .
Pl +di)

ZZZI pfu(l + qfv)

The denominator in eq. (4) ensures eq. (1) while the nu-
merator updates p;, with 14-¢;x being the relative change
of pin. We let Rijxw € [—1, L] to keep |gF| < 1. 2

Tn'n

k41 .
Pix =

4)

It is easy to show [5] that in the case of symmetric R;jx,,
equation (3) is the gradient of the “gain function”

G(p) = % Z Z ; Z RijauDirDjy-
i g B

With the Baum-Eagon theorem it is therefore possible
to show that the updating fixed point iteration in (4)
performs a sort of gradient ascent [6]. But, of course,
the above iteration equation is only one of many choices
to do this. Indeed, most relaxation labeling algorithms
with symmetric R;;», that use eq. (3) essentially perform
constrained maximization of G(p) based on the gradient
VG(p) and therefore belong the the class of optimization
models. For these models maximizing G(p) is thus equiv-
alent to increasing the consistency of the labeling p using
the R;jx,. Faugeras and Berthod [7] and Hummel and
Zucker [2] have investigated the general form of relaxation
schemes based on step-wise constrained optimization by
gradient projection:

(5)

pit = pf + a¥(pf,qf) (6)
where ¥(p¥,qF) is an operation that performs gradient
projection and « is a small step-size. The operator a'¥
returns an updating vector which ensures that the up-
dated vector p¥*! lies within K*, i.e. fulfills eq. (1). We
will use below also the (conceptually and implementation-
ally much simpler) projection operator ¥ which projects
on K7.

For non-symmetric R;jx,, the interpretation in terms
of maximizing a gain function breaks down. Hummel
and Zucker [2] have shown that the above schemes will
still lead to consistent labelings (with consistency appro-
priately defined). These arguments replace the previous
heuristics given by Rosenfeld and summarized in figure 2.
Another approach that is based on Bayesian reasoning for
only one single step of the whole relaxation process has
been widely used, notably by Haralick [8] and Christmas
and Kittler [9]:

pix (H}':l PN RijAtuu)
pix =

ZA Dix (H] ZIL Rijkupjy)

In eq. (7) the R;j;,, are positive quantities measuring the

ratio of the probability of the labeling (4, 1) conditional on

the given labeling (¢, A) , to the unconditional probability
of that labeling [9].

Y

20f course it is also possible to retain R;jx, € [~1,1] by using
appropriate weight factors d;; in eq. (3) as was done in [1].

Relaxation schemes are built to reduce ambiguity and to
improve consistency [7]. Doing normalized relaxation, am-
biguity reduction amounts to slowly changing p; towards
one of the unit vectors in C;, which are the only ‘com-
pletely unambiguous labelings in K7. This means that
normalized relaxation implicitly assumes that we want to
associate with each object only one label. A separate
rejection-label has to be introduced to include the pos-
sibility that none of the labels is correct.

As with every iterative scheme the question of conver-
gence and/or termination criteria is imminent. For nor-
malized relaxation it has been shown that updating rules
(6) and (4) will give convergence under fairly general con-
ditions [7],(2],[6]. For optimization approaches it must be
noted, that according to the problem at hand one does €i-
ther seek global convergence to the maximum of the gain
function or only local convergence to the nearest maxi-
mum. If the initial setting p® is the most reliable input to
the relaxation scheme and the aim is to improve p° slightly
by taking into account relational information Rjj), the
aim is to find a nearby maximum of G(p). If on the other
hand the problem specification relies mostly on relational
knowledge expressed through R;;», and p°® might even be
random one is interested in finding the global maximum.
In this case deterministic relaxation schemes(as discussed
in this paper) might get stuck at local maxima of G(p).

V. NON-NORMALIZED MODELS

Until now, non-normalization of a relaxation scheme has
been regarded as the essential definition of a fuzzy model
and to the knowledge of the authors no normalized fuzzy
models exist in the literature. Thus the few existing mod-
els described below are all fuzzy models.

Non-normalized models permit one object to carry mul-
tiple labels by allowing more than one assignment weight
to become greater than 0.5. Two exemplary applica-
tions that may lead to such labeling problems are: The
mixed pixel problem in image processing and stereo fea-
ture matching or tracking. One pixel may indeed belong
to multiple classes and we may like to express this in a
way different from having low confidence in both classes.
Also stereo features in one frame may correspond to more
than one feature in the other frame when lines or regions
break up. Non-normalized labelings are well suited when-
ever it appears more naturally to stick to non exclusive
and/or non exhaustive classes.

We begin with the first fuzzy model ever proposed

([1],[3,(10}):

S R L k
Py =min [glegr Rijau N iy

®)

where A means “and”, that is e.g. min or product. It
is understood that R;;x, € [0,1]. It has been shown [1]
that the iteration expressed by eq. (8) converges to the
greatest consistent fuzzy labeling, with consistency being
defined by

9)

and greatest consistent labeling standing for a labeling
yvhose individual p;x are each greater than the correspond-
ing assignment weights of other consistent labelings.

m;
max Rijap A pjp > Dix.
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There exists, however, one difficulty with the above al-
gorithm: low weights are contagious. If for some object j
we have pj, < 0.5 for all u then after application of (8)
we have p;) < 0.5 for all ¢, A.

Another suggestion [3] has been to use

1 i m;
B4l . i o k
Pix = 2 1: [‘}}2"‘1 Rijap /\Pju} .
j:

(10)

This updating scheme is no longer suffering from the prob-
lem of contagious low weights. Both increases and de-
creases of p;» are possible. However, it may appear unfa-
vorable that the current weight pf,\ gives only one term in
an average when determining its new value.

A few other fuzzy relaxation schemes have been used
[11],{12] but since they are quite specific solutions suited
mainly for particular applications, we will not discuss
them further. Recently a promising new candidate for
a completely different approach to fuzzy relaxation based
on the Mazimum Weight Bipartite Matching problem has
been presented [13].

V1. CONSIDERATIONS ON FuzzZY RELAXATION

Continuing the reasoning started in section II, it is to be
investigated whether the broader viewpoint adopted there
helps in finding new fuzzy models. Two initial observa-
tions are in order:

o It has been argued that fuzzy relaxation has to be
defined through the use of fuzzy information and/or
fuzzy fusion operations. Thus all the normalized
models reviewed (except the probabilistic one) may
as well be interpreted to be fuzzy models if they deal
with fuzzy data.

o It has been observed that it is highly desirable for
fuzzy approaches to allow for increases as well as de-
creases and to emphasize the importance of individual
assignment weights.

We may think of two major classes of techniques that
can be employed in a fuzzy relaxation framework:
« Analytical methods such as optimization of an appro-
priate gain function by iteration.
o Algebraic methods such as various fuzzy fusion oper-
ations or fuzzy rule bases.

A. Analytical Methods.

We shall restrict discussion to the constrained optimiza-
tion framework which is definitely the setting to model re-
laxation in case a gain function can be defined, i.e. when-
ever R;;y, is symmetric. Even with purely symmetric
R;;», relaxation by optimization includes many useful ap-
plication domains. Furthermore, the updating formulae
obtained with symmetric R;;», may also give reasonable
results in case no gain function can be defined [2].

It is desirable to choose functions G{p) for which the
gradient VG(p) can be evaluated locally for each object
1 by taking into account only some neighborhood of i.
This is usually the case in equation (3) because only some
neighboring objects j will contribute to g;x, i.e. have
R;jx, # 0. If the locality property gets violated the gra-
dient projection algorithm remains still valid but can no

longer be parallelized. Note also that, if G(p) should be
non-differentiable still other optimization techniques can
be used such as simulated annealing.

When trying to modify the gain function the meaning
of the terms to be put into the gain function has to be
clarified. Faugeras and Berthod [7] have argued in favor
of two major terms, a consistency measure and a mea-
sure for ambiguity: G(p) = G¢(p) — G.(p). Maximizing
G(p) therefore amounts to increasing consistency G.(p)
and decreasing ambiguity G,(p). We adhere to the com-
mon practice of identifying the consistency measure G.(p)
with the terms in equation (5) and proceed to discuss var-
ious possible definitions of G, in the following.

A.1 Normalized Models.

The theoretical basis for local and stepwise constrained
optimization of normalized models has been investigated
by Hummel and Zucker [2]. Their gradient projection al-
gorithm has been summarized in section IV. The only
question here is if introducing an extra measure of ambi-
guity G.(p) is interesting; and if so, if fuzzy set theory
has something to contribute to its definition.

Today many different measures for various types of un-
certainty including ambiguity are at our disposal [14].
Expressing the wanted effect of the measure for ambi-
guity Go(p) during relaxation in geometrical terms we
search for “repulsive potentials” (i.e. penalty terms) in
the vicinity of the center points ¢} := —-1;, 1; = (1,..,1)
of the simplexes in KP. These points correspond to the
most ambiguous configurations in K?. Note that an en-
tropy term Go(p) = — >_;, Pir In(pix) would amount to
such a repulsive potential, as would other entropy-like
terms [14]. Another possibility is to introduce a term
Ga(p) = — 3; ¢i(d,,) with %, := 37, (pix — 1-)? being
the squared distance from the center point ¢. Each ¢; has
its negative local minimum at the distance 0 and increases
towards zero for larger distances.

A.2 Non-normalized Models.

In the case of non-normalized fuzzy models the p* are
allowed to wander around in K/ through repeated appli-
cation of eq. (6) with ¥(p¥, qF) projecting onto K/ and
q = VG(p). K7 not only contains many more potential
labeling situations than K™ but also for most points in K/
the distance to the closest unambiguous labeling p¢ € Cis
bigger than the greatest possible distance of the points in
K" to apoint in C. Putting it informally: There are many
more strongly ambiguous labelings in Kf than there are in
K". Therefore an additional term G, (p) in the gain func-
tion which explicitly tends to reduce ambiguity becomes
much more important now.

Adopting once again a geometrical viewpoint we can
easily state what G, (p) should accomplish: For points p
close to one of the unambiguous corner points in C am-
biguity G, (p) should be low. The further away from the
corners p lies the higher G,(p) should become. A little
experimenting shows that none of the common definitions
reviewed in [14] captures these features satisfactorily for
the task at hand. Thus we proceed to define a new mea-
sure of fuzzy ambiguity. G, should amount toa landscape
with basins in the vicinity of the unambiguous labelings
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and elevations elsewhere. In a first approach one might

set
GalP) == D ¢i(pi —pf)

i pieC;

(11)

with ¢;(x) being high for x = 0 and decreasing towards
0 as |x| increases. The above definition shows two practi-
cal drawbacks: The double sum in the definition of G,(p)
requires a lot of additional computations for each step of
relaxation and each object i. Secondly the ¢;(x) are not
functions of |x| but necessarily depend also on the direc-
tion of x. This makes the single terms complicated and
frequent evaluation of the gradient even more costly.

We therefore propose a different measure of ambiguity
which is more quickly evaluated while keeping the most
important properties of the above, intuitive definition. To

this end we split the term G,(p) := G,(,l)(p) + G.(,z)(p)

in two parts with separate characteristics. G,(,l)(p) is a
measure based on the signed normal distances of the p; to

the simplexes K7, while G (p) depends on the rescaled
distances of the p; to the diagonals d; in K{ s d;(t) i =te
with ¢t € [0,,/m;] and e; := \/—1;_’,1,-.

GM(p) = z"j«p,f” ((p: — c}) - eT) (12)

i=1

GP(p) = ida@ (pi Ll eg)z) SNt

i=1 1;- pzT - (pl € )2

As can be verified with a little effort the argument of
¢§1) is indeed the signed normal distance of p; to the sim-
plex K? while the argument of 1/),(2) is the square of the
distance of p; to the diagonal d;(t) rescaled by the nu-

merator in such a manner that all corner points of K/ are
at the same “unit” distance.

The functions ${" (z) are zero for z = 0 and increase as
|| increases such that the final effect of GV is to obtain a

“valley”-potential at the locations of K?. Thus G will
tend to drive p* to the vicinity of K*. As the labelings of
K™ are on the average less ambiguous than most labelings
far from K" this will already introduce a bias for unam-

biguous labelings. Regarding G tobe an approximation
to equation (11) we see that the major errors introduced
by reducing eq. (11) to equation (12) are to be expected
for p; near to the strongly ambiguous line segments d;(¢).

The purpose of G? is exactly to reduce errors in that
region. The functions 1!1,(2) (z) are high for z = 0 and
decrease towards 0 as x increases until zﬁgz)(l) = 0. This

way G¥® penalizes labelings near to d(t) by assigning a
high measure of ambiguity to them. The combined effect

of G and G is to keep ambiguity values low especially
near to K" and there the lowest values are obtained far
from d, i.e. at the corners C. It is therefore similar to the
effect of eq. (11) but note that the double sum is no longer
present in the new definitions. This has become possible

because using eq. {12) and (13) we no longer explicitly
enumerate potentials ¢; having high values only in the
domain D around C where G, should be low. Instead the
new equations enumerate potentials ¢§1) and w?’ which
assume high values in the complement K< \ D, a region
which can be represented much more compactly than D.

It should also be noted that for many applications it
will be possible to define how much ambiguity should be
tolerated without penalizing. The width of the functions

dzgl)(z) can then be chosen accordingly. For example in
the case of stereo matching of lines, the maximum number
w of pieces into which a line may have been broken up
can be determined by searching for collinear, nearby lines.
The ambiguity measuring potential Go(p) can then be
chosen to become very high for labelings with more than
w high assignment weights.

For non-normalized fuzzy models the quantities Ry,
may also be of special importance in the process of reduc-
ing ambiguity. Quite often specific Ri;, have to be set
to negative values near to —1 and therefgre the compati-
bility term (5) will already help in eliminating ambiguous
configurations because it will tend to keep either p;) or
Piu Or both low. Again an example for the application to
structural matching of stereo images of lines can be given.
To set Rz, to a low value indicates that one does not
believe that line 2 in the left image has broken up into the
two lines A and g in the right image. This may be the
case because A and p are not collinear, too far apart, etc.
Note that it is not even possible to model this case with
normalized relaxation schemes [5] where only the merging
of lines can be handled if multiple objects ¢,5 are allowed
to get the same final label A. .

The introduction of non-normalized fuzzy relaxation
models based on optimization of a function G(p) also
solves the problems stated in connection with the existing
fuzzy models: Optimization frameworks result in update
rules of the same form as equation (6). Thus the current
assignment weight pk, plays a special role in its updating
process and both increases and decreases are possible.

B. Algebraic Methods

Again we will restrict attention to a particular modeling
tool: fuzzy rule bases as they are used for fuzzy control
tasks. Figure 2 can immediately be interpreted in terms
of qualitative control rules to calculate the change Apk,
S)f the assignment weight p%, .( n = card(0), m = card(A)

e IF ph, IShigh AND Ry, IS high
THEN Apl, IS positive.
o IF pf, ISlow AND Ry, IS high
THEN Ap%, IS negative.
o IF pt, IShigh AND Ry .. IS high
THEN Apk, IS positive.
e IF pt, ISlow AND Ry s, IS high
THEN Apf, IS negative.

Rule base 1: Calculation of Apk,
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We have neglected the rules leading to no change for
brevity. Various realizations of the above rule base can be
conceived in the domain of fuzzy control. Since figure 2
describes the local behavior during one relaxation step the
fuzzy rule base can be evaluated locally for each object 4.
The resulting Apf, have to be fused with pf, to yield the
next assignment weights

pitt = £(pf, Apf).

The fusion functions f must lead to values p&t! in [0,1]
which are increasing with both p¥, and positive Ap¥, and
decreasing with negative Apf,. This fusion operator f
plays a crucial task in the upé‘ating process and must be
devised very carefully in order not to change the updating
behavior that is indicated by Ap%. For example, whenever
optimization schemes are applicable, through the gradi-
ent we know the “best” local updating vector ¥(pF, q¥)
lying in feasible space and pointing towards increases of
G(p). If the fusion operator f is not designed carefully
it may happen that even with the “best” updating vector
qf = V,;G(p*) put into f, the fusion operator f produces
a step in the wrong direction. A possible, cautious way to
proceed would be to apply the same updating rule as was
used for gradient back-projection

pi*t = p¥ + a¥(pf, Apf)

now back-projecting Ap¥ calculated with the rule base.
This updating puts all the burden to the calculation of
Ap¥ and ensures afterwards that the result is not altered
except to achieve a point in feasible space K™ or K/. In
the following we separate again the discussion of the two
cases of normalized and non-normalized relaxation mod-
els.

Normalized fuzzy models have to compete with the results
obtained by Hummel and Zucker (2] for general, normal-
ized updating schemes. There are two possible general-
izations conceivable: On the one hand it may be that the
consistency criterion which is fundamental for the work in
[2] could be replaced or enhanced by other terms. On the
other hand it may be that for certain applications only lin-
guistic descriptions of support or resistance can be found.
Both situations may still lead to a solution in terms of
fuzzy rule bases.

For non-normalized fuzzy models it has to be observed
that the rules in figure 2 and Rule-base 1 are necessary
conditions for a relaxation scheme but they will usually
not be sufficient. The problem being, that these rules de-
scribe how to achieve consistency but do not describe how
to reduce ambiguity. In the normalized case this is done
partially by the normalization constraint as has already
been explained. For non-normalized models the rule base
approach has to include rules on how to deal with con-
flicting evidence. Since objects can have high assignment
weights for different labels it might be that the same ob-
ject j is through the labeling (7, #1) and Riyj,, indicating
strongly to decrease p¥, , while the labeling (j, u2) together
with Riyju, points to an increase. This problem arises
here in full severity because we have no normalization con-
straint and we have to hand-craft all fusion operators and
rule bases. For particular situations solutions have already
been found [15].

VII. SuMMARY, CONCLUSIONS AND OUTLOOK

We have re-examined the current classification of relax-
ation labeling schemes and have found it inappropriate to
equate fuzzy models with the category non-normalized re-
laxation schemes. This is the first time an approach has
been undertaken to define and defend normalized fuzzy
relaxation models. The presented ideas establish a new
framework for fuzzy relaxation approaches be they nor-
malized or non-normalized.

For both types of fuzzy relaxation models two possible
implementations have been discussed: optimization based
and rule based. Insights and concrete guidelines for new
approaches have been presented. The optimization ap-
proach leads to theoretically well justified fuzzy relaxation
schemes with new, geometrically motivated definitions of
measures of ambiguity. The rule based approach offers the
possibility to extend the domain of relaxation to problems
defined in purely linguistic terms. Explicit implementa-
tions and experiments with rule based relaxation on the
task of matching curves and lines can be found in [15].
Ongoing work is undertaken to apply the presented ideas
to various labeling problems.
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