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Abstract : We propose in this paper two methods for
constructing a mathematical morphology working on fuzzy
sets with fuzzy structuring elements. They are compatible
with classical mathematical morphology on binary sets or
grey-level functions with binary structuring elements. Their
properties are presented and comparisons are made
between the two approaches. Fuzzy mathematical morphol-
ogy provides new operations on fuzzy sets and can be
applied in particular for introducing spatial uncertain infor-
mation in a decision process for data fusion.

INTRODUCTION

In image analysis and pattern recognition, fuzzy
sets proved to be useful representations for segmenting,
classifying or data fusing, whenever regions or classes
cannot be crisply defined [3]. Since their introduction,
they have been widely used for control and decision mak-
ing and more recently for images. In order to manipulate
fuzzy sets as extensions of crisp sets, operations have
been developed which generalize set operations (inclu-
sion, intersection, union, etc.) [9]. Then, the need for
geometrical operations on fuzzy sets appeared and con-
cepts like convexity, perimeter, area, distance have been
developed. They are summarized in [3].

In this paper, we are interested in the extension of
mathematical morphology for fuzzy sets. Mathematical
morphology originally aims at studying shapes by com-
paring them locally with structuring elements through set
relations. So, for dealing with fuzzy sets, it naturally fol-
lows set and geometrical operations. Fuzzy sets can be
treated as functions through their membership function.
However, a direct application of erosion and dilation for
functions [4] is not satisfactory as the result of such an
operation is no longer the membership function of a fuzzy
set.

Mathematical morphology for fuzzy sets has
already been addressed in [3] where shrinking and
expanding of fuzzy sets are defined but only with binary
structuring elements. They exactly correspond to grey-
level erosion and dilation with a binary structuring ele-
ment applied to the membership function of a fuzzy set.
Fuzzy structuring elements have not been considered.

A completely different approach has been
described in [8]. It relies on the association of classical
mathematical morphology with order statistics. It does
not provide exactly fuzzy erosion and dilation but a series
of transformations ranging continuously from grey-level
erosion by the support of the structuring element to grey-
level dilation by the same structuring element.

Erosion and dilation of fuzzy sets by fuzzy structur-
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ing elements are defined in [5] and [6]. They are strongly
related to the classical erosion and dilation on functions,
using a similar definition but guaranteeing the internal
property when applied to fuzzy sets. Therefore, they exhi-
bit similar properties than conventional morphology for
functions. These definitions have been derived keeping in
mind the point of view of mathematical morphology
mostly. Thus, their advantages lie mainly in their ability
to generate other operations like opening and closing
which are idempotent, increasing and anti-extensive
(respectively extensive) and in their contribution to
theoretical mathematical morphology (algebraic proper-
ties, representation theorems) [7]. When looking at the
contribution of these definitions from a fuzzy set or a
decision theoretic point of view, their implications may
appear somewhat weak or not in agreement with the idea
we intuitively have of uncertainty propagation (see part
3), and alternative definitions may be looked for, which
emphasize more the fuzziness properties.

The aim of this paper is to present these other
definitions for fuzzy dilation and erosion, which were
developed in order to provide new transformations on
fuzzy sets which include spatial information reasoning
within the scope of decision making. These definitions are
deduced from two different principles of construction.
The first definition (section 1) relies on the concept of
fuzzification, which represents a fuzzy set membership
function as an integral of characteristic functions of crisp
sets. The second one (section 2) is deduced from a func-
tional expression of set relations (a similar approach is
used in [S]). Section 3 is dedicated to the comparison
between the two definitions and also with Sinha and
Dougherty definition. Only the main results will be given
here, complete proofs can be found in [1].

1. Fuzzy EROSION AND DILATION BY FUZZIFICATION

A. Principle

Let M be the set of all fuzzy set defined on a space
E, or equivalently the set of all their membership func-
tions p from E to [0,1]. Let M be the set of all binary (or
crisp sets), or equivalently the set of all their characteris-
tic functions p from E to [0,1].

A cut at level o of a fuzzy set characterized by p is
the binary set with characteristic function p,,. A fuzzy set
can be reconstructed from its own cuts by:

1
VxeE, wx) =_[ Ho(x)da. Let @ be a fuzzy function,
from M to M. ®°is the fuzzification of a function ®¢ from
M to M on binary sets if the restriction of @ to M is
equal to ®.. The fuzzification of a binary function can be
obtained in a way analogous to the reconstruction of a



fuzzy set from its

1
Ve, & =] @clu)da.

This fuzzification principle is the basis for con-
structing our first fuzzy dilation and erosion from the
binary definitions.

B. Definitions

Definition 1.a: let n and v be membership func-
tions of two fuzzy sets. The dilation of p by v is obtained
by fuzzification over p then over v, or, equivalently, over
v then over pu.:

dyw@ = dvupynap= [ a, p)cdaap
= avowda={ [ 4, apedpda.

Al simple straightforward derivation  provides :
" d, wx)da=] sup py)da and thus, for any x £ :
o - 0 ye(v,),

own cuts by :

T
a!v(u)(x)=I0 JSup, wy)da (def. 1)

The result d, () is the membership function of a fuzzy
set.

In a similar way, erosion can be defined by
fuzzification.

Definition 1.b : let p and v be two fuzzy sets, the
erosion of p by v is obtained by a double fuzzification,
and we have, for any x €E:

ey = inf o)a

The result e,(u) is the membership function of a fuzzy
set.

C. Properties

Intuitively, the global behaviour of the fuzzy dila-
tion is as follows : membership degrees are increased of
these points which were not "surely" belonging to the
fuzzy set, also local maxima are propagated within a
given neighbourhood. Furthermore a regularization effect
exists which makes the resulting curves "smoother" than
the original ones.

More precisely, following properties hold :

Proposition 1 : let i denote the symmetrical of p
with respect to the origin of the space E. Using Min-
kowski addition commutativity, we obtain :

dy(W) =dg(V) = (d, (V).
This equation expresses a pseudo-commutativity.

Proposition 2 : the fuzzy dilation d,(p) is increas-
ing for fuzzy set inclusion with respect to the initial fuzzy
set pu and with respect to the structuring element v (fuzzy
inclusion is defined by the less-or-equal relation on
membership functions) :

YLp)eM?, u< ' = YveM, d,(u) <d, (),
Yv,V)eM?, v<V = VueM, d,(w) < d, ().
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Proposition 3 : the fuzzy set dilation is extensive if
v(0) = 1, v being the structuring element :

VivaweM?, v0)=1=d, (W21
Simple examples can show that dilation is no
longer extensive if v(0) # 1.
Proposition 4 : dilation of the intersection of two
fuzzy sets :
V(W vIeM?, d,(un W) <dy(w) N dy(w).

Proposition 5 : dilation of the union of two fuzzy
sets :

VLW, vyeM?, d,(uu 1) 2d, (W) U dy ().

Proposition 6 : dilation by the intersection of two
fuzzy structuring elements :

YWV, V)eM?, dyry (W) < dy(W) N dy ().

Proposition 7 : dilation by the union of two fuzzy
structuring elements :

YLV, V)EM?, dy vy (W) 2 dy(w) U dy ().

Proposition 8: regularization effect: if the
membership function p decays in O (x") and if v decays
in O (x™), then d () decays in O (x"*™), at least for some
values of x in E.

Note that if v is binary, the inequalities in proposi-
tions 5 and 7 become equalities.

Similar properties hold for fuzzy erosion :

Proposition 9 : fuzzy erosion e,(p) is increasing
with respect to the initial fuzzy set p and decreasing with
respect to the structuring element v.

Proposition 10 : fuzzy erosion is anti-extensive if
v(0) =1, v being the structuring element :

Vv,weM?, v0)=1= e, (n)<p

Proposition 11 : erosion of the intersection of two
fuzzy sets :

YL, v)eM?, e (LN W) S e (1) N ey ().

Proposition 12 : erosion of the union of two fuzzy
sets :

VLW, VIEM?, e (LU W) 2 e (W) U ey ().

Proposition 13 : erosion by the intersection of two
fuzzy structuring elements :

VLV, V)EM?, eyny () 2 e, (W) U e ().

Proposition 14 : erosion by the union of two fuzzy
structuring elements :

VLV, VIEM?, ey () S ey (1) N ey ().
As for dilation, if v is crisp, equalities hold in pro-
positions 11 and 14.

The properties for erosion can be either proved
directly or deduced from the properties on dilation by




using following important duality result :

Proposition 15 : fuzzy dilation and fuzzy erosion
are dual operations with respect to fuzzy set complemen-
tation :

Y, v)eM?, VxeE, d,(1 - p)(x) =1 - e, (W(x).

As stated in [4], mathematical morphology aims at
satisfying four basic principles : compatibility with trans-
lations, compatibility with homotheties, local knowledge
and semi-continuity. These four principles are satisfied by
the previous definitions, and we have for example for
dilation :

Proposition 16 : for a fixed p, the transformations
which associate to any v of M the dilation 4., (1) and the
erosion e, (i), satisfy to the principle of compatibility
with translations. Similarly, for a fixed v, the transforma-
tions which associate to any p of M the dilation d,(p) and
the erosion e,(p) satisfy to this principle. This means
that transformations like erosion or dilation do not depend
on the origin of space E where fuzzy sets are defined,

Proposition 17 : for a fixed p, the transformations
which associate to any v of M the dilation d(jt) and the
erosion e,(l), satisfy to the principle of compatibility
with homotheties. Similarly, for a fixed v, the transforma-
tions which associate to any  of M the dilation d,, (1) and
the erosion e, () satisfy to this principle.

Compatibility with homotheties guarantees that the
transformations do not depend on a scale parameter A. In
the case of fuzzy sets, this scale parameter is limited to
10,1] so that the result remains a fuzzy set:
(Ap)(x) = Ap(x).

Proposition 18: the computation of dilation and
erosion of a fuzzy set 1 in a binary mask Z is sufficient to
derive the result of the operation in the erosion of Z by the
union of cuts at level a of the structuring element for
a€]0,1] (i.e. its support) :

AN DNy, @) =d\w N (e, (),

ael.1) ael0l]

levkN DN (e v @N=ey() N (e v, (@)
a€l0.) ae)0,1]
Proposition 19 : fuzzy dilation and erosion by a
fixed structuring element v are semi-continuous opera-
tions. Let (W;);en be a series of fuzzy sets, decreasing
with respect to fuzzy inclusion (<), with the conditions
that: lim p;=p and VieN, y; <p. Then, the series
—+o0

15
(dy(1;)); e is decreasing and lim d,(w;)=4d, ().
I=¥too
This principle ensures the robustness of transforma-
tions.

1. Fuzzy EROSION AND DILATION BY FUNCTIONAL UNION
AND INTERSECTION

A. Principle

A second definition of fuzzy dilation can be
obtained from the definition of binary dilation of X by a
structuring element B expressed by {x €E,B,NX =}
by translating it in functional terms using the characteris-
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tic functions py and pg of X and B. In this way, we
obtain :

BinX#@&o3yeB,,yeX & sup min[pg(y —x),ux ()] = 1.
yE
Similarly for erosion, the translation of the set
equality B, c X in a functional expression provides :
BicXe& ;'ev; max[1-pp(y—x), ux(y)1 = 1.

B. Definitions

Definition 2.a : from the above principle, the dila-
tion of a fuzzy set p by a fuzzy structuring element v
(denoted d () is defined, for any x eE, by :

[ a*,(u)x) = sup min[u(y),v(y—x)]

(def. 2)

This definition is by construction compatible with
the binary dilation. If v is binary and for any {1, we have
d*,()(x) = sup W(y), and thus the definition is also com.-

yev,
patible with grey-level dilation (with binary structuring
element).

Definition 2.b : in the same way, fuzzy erosion can
be defined by :

Ii‘v(u)(x) = inf max[u(y), 1-v(y -x)]—l

As for dilation, compatibility with binary erosion
and grey-level erosion with binary structuring element
holds.

C. Properties

Proposition 20 : fuzzy dilation and fuzzy erosion
are dual operations with respect to fuzzy set complemen-
tation :

V(wv)eM?, Vx eE, d2 (1 - w)(x) = 1 - e2,(W)(x).

This proposition allows to deduce the properties of
fuzzy erosion from the properties of fuzzy dilation, which
are the only ones given here.

Proposition 21 : the fuzzy dilatation is increasing
with respect to pand to v.

Proposition 22 : the fuzzy dilation is extensive if
v(0)=1.

Proposition 23 : the fuzzy dilation is pseudo-
commutative, in the sense of proposition 1.

Proposition 24 : dilation of the union of two fuzzy
sets :

VLW, veM?, d*(nu ) =d?,(p) U d2,(w).

Proposition 25 : dilation of the intersection of two
fuzzy sets :

VL, VeM, d*(nn ) <d? () N a2, ().
Similar results hold for the dilation by the union or
intersection of two fuzzy structuring elements.

Proposition 26 : for this definition, we have a very
strong result on the cuts of a dilated fuzzy set :



V(L v)eM?, Yae[0,1), [d2 (W)l = d?y, (1e).

Proposition 27 : the fuzzy dilation satisfies the
principle of compatibility with translations.

Proposition 28 : the principle of local knowledge is
satisfied :

[ mn 2N Ly @) =d* W n (e, @)

a€p.)] aelo,1)

Proposition 29 : the fuzzy dilation is semi-
continuous.

However, this second definition of fuzzy dilation
does not satisfy the principle of compatibility with
homotheties. But it is not a major drawback from the
point of view of fuzzy sets.

ITI. COMPARISON BETWEEN THE TWO DEFINITIONS

A. Underlying concepts

The underlying concepts of the two construction
principles are fully different. They have in common a
basic requirement : we want to construct operations which
are compatible with the binary case. This requirement has
been achieved in two different ways :

- by considering a fuzzy set as a stack of binary
sets ;

- by translating a set equality into a functional one.

We gave one example for each construction princi-
ple. Other ones could have been given. For the first one,
the formal expression for "'stack" was an integral. It could
have been a "sup" for example and then, the membership
function of a fuzzy set would have taken the form
Wx) = supfae[0,1]/py (x)=1}.

Similarly, the translation of set equalities into func-
tional relations can be performed in several ways. They
correspond to different expressions of union and intersec-
tion for fuzzy sets. The translation given here corresponds
to the most used definitions of union as a "max" and inter-
section as a "min". Other generalizations may be used,
such as product for intersection and algebraic sum for
union, or bounded sum for union, each one giving rise to
another fuzzy mathematical morphology :

In a similar way, the approach of [5] relies on the
union expressed as a bounded sum. The variety of
approaches is due to the variety of ways for finding opera-
tions on functions which are equivalent to union or inter-
section if the functions take only values 1 and O [2]. Table
1 presents several fuzzy union and intersection (which
satisfy the duality principle) and the corresponding fuzzy
erosion and dilation. The last line corresponds to the
definition of [5].

Figure 1 shows the qualitative differences between
the definitions of dilation on a simple example. For a par-
ticular application, the definition has to be chosen
depending on the desired effects and on the required pro-
perties (which are slightly different, see Table 2). In par-
ticular the definition of [5] illustrated on Figure 1.c has,
sometimes, stronger morphological properties but we see
from Figure 1.c that it has weaker effect on uncertain pro-
pagation.

B. Comparison of the properties of the two definitions

Table 2 summarizes the properties of the two
definitions of the fuzzy dilation. They are also compared
to the two other definitions given in Table 1. The right
column corresponds to the definition found in [5]. A
similar comparison can be made for erosion. Iteration and
combination are the basis for deriving further operations
from erosion and dilation. For the classical definition, the
iteration of two successive dilations is associative. This
result does not hold for fuzzy dilation in the general case.
In the same way, the succession of an erosion and a dila-
tion is not anti-extensive and thus does not define an alge-
braic opening. The line "combination" in Table 2 shows if
the combination of erosion and dilation provides alge-
braic opening and closing. However, even if it does not,
these operations have interesting effects (of reducing
noise for example) which can be appreciated in a context
of noisy data fusion.

Generally speaking, it is not surprising that some
properties are lost when extending a theory. Table 2
shows however that both definitions behave generally
well with respect to the properties of mathematical mor-
phology. Most important is that they provide a sound
basis for morphological operations on fuzzy sets, which

I d,(W)(x) = sup [V —x)] l (def. 3) allows to introduce spatial information in a decision mak-
yeE ing framework.
| VW) = inf OO -x)+1-v(y—=x)] |
Union Intersection Erosion Dilation Definition
max(y, V) min(p,v) iné max[u(y), I-v(y —x)] su;bg min[p(y), v(y —x)] Def. 2
Y€ ye&
pAvV—pv [ThY ;n{ (MO Wy —x)H+1-v(y—x)] sup MOV -x)] Def. 3
€ ye
min(1, p+v) max(0, p+v—1) inf min[1, T+n()—v( )] sup max[0,uyHv(y—x)-1] 5]
Y€ Y€

Table 1
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: -
jo , 2%:)},0,)‘1“ sup min[u(y), v(y =x)] sup ROV -x)] 4P max[0, iy +v(y—x)-1]|
(def.1) (def.2) (def.3) ((8)))]
Compatibility with yes yes yes yes
p@v if v is binary
Increasingness yes yes yes yes
Extensivity if v(0)=1 if v(0)=1 if v(0)=1 if v(0)=1
Pseudo-commutativity yes yes yes yes
Intersection < < < <
Union 2 = = =
Cuts X [dzv(u)]o. = dzvu (he) X X
Compatibility yes yes yes yes
with translations
Compatibility yes no yes no
with homotheties
Local knowledge yes yes yes yes
Semi-continuity yes yes yes yes
- 1 - - - -
Erosion '[o , !{’{,,”‘” da ;Ielé max[u(y), 1-v(y—x)] ;’:fE (LYWW —x H1-v(y —x)] yl;zé min[1, 1+p(y)-v(y—x)]
Duality yes yes yes yes
Iteration no yes yes yes
Combination no no no yes
Support of dilation |supp(u) © supp(v)| _supp(u) ® supp(v) supp () © supp (v) supp (W) ® supp(v)
Regularization ocx M - naxm ocx o< max(nm)
ocX "
(if pocx” and vocx™)
Complexity O(NV) O(NA) O(NA) O(NA)

Table 2

The complexity is given in the finite case, where N is the cardinality of E and A the cardinality of the support of the structuring

element supp (v).

IV. CONCLUSION

We proposed in this paper two definitions for fuzzy
mathematical morphology. They extend the set of possi-
ble operations on fuzzy sets by adding morphological
ones, taking into account a fuzzy neighbourhood. Erosion
and dilation have been shown to have good properties
with respect to fuzzy sets and to mathematical morphol-
ogy for the both approaches presented in sections 1 and 2.
Only a few properties usually required in mathematical
morphology are weakened or lost. These new definitions
may be used as alternatives to either binary mathematical
morphology as in [3], or grey-tone mathematical mor-
phology adapted to fuzzy sets as in [S]. They provide
operations which have been tested on multisource medi-
cal image data fusion, and exhibit excellent properties,
well in agreement with the intuitive notion of spatial
uncertainty management which is one of the components
of decision making in pattern recognition.
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9 yevo (The initial fuzzy set is dashed and the result of dilation is drawn with
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