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ABSTRACT

A new kind of entropy is proposed, which associates
spatial and radiometric properties of images. The pos-
sible use of this entropy is shown firstly to measure the
effect of picture processing algorithms, then to control
the evolution of iterative contextual classification algo-
rithms like Markov Random Fields.

1. INTRODUCTION

Since the early works of Shannon and Wiener [9], en-
tropy has been widely used to express the information
content of a message. Although a more modern the-
ory based on algorithmic information concepts has been
proposed in the 60’s [5], the probabilistic approach of
Shannon and Wiener remains the most adequate in the
domain of image processing, where statistical proper-
ties govern signal and noise. Jaynes [4] has shown that
the formulation they proposed is the only one which al-
lows to express rationally the quantity of information
we could expect to gain from an emitter, as soon as this
emitter is defined by a stationary emission of symbols.
On the other hand, maximization of entropy is now
a universally recognized optimality criterion which al-
lows to select, from a broad class of possible solutions,
the one with the highest probability [8]. Kullback [6],
followed by Jauch and Baron (3] proposed a differen-
tial form to measure the gain of knowledge between two
successive stages of the system, i.e. the gain of informa-
tion provided by one stage of processing for instance.
Following this idea, we can define a good algorithm for
pattern recognition as one such that it drastically re-
duces entropy : starting from a stage where entropy is
high (i.e. where ignorance is the rule), and providing
a final result where it is as low as possible (i.e. where
certainty is total).

Our approach follows this track. At first we ex-
tend the conventional definition of entropy to encom-
pass spatial properties which are known as being of
prime importance for picture processing; then, we show
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how it may be used to compare different iterative clas-
sification algorithms.

2. ENTROPY AND IMAGE

Following the usual information theoretic approach, an
image may be seen as a source of independent pixels
with values in N, each level ¢ having a probability p;.
The image entropy S is measured as:

S=- pilogpi
iEN

(1)

To extend this definition to non-independent pixels,
higher-order entropy has been introduced, taking into
account the joint probabilities of pairs, or of triples of
pixels. In communication theory, it allows for instance
to evaluate limit performances of predictive coders for
lossless image coding. But, in the framework of pattern
recognition and image processing, this extension is not
very fruitful, since it doesn’t reflect the spatial depen-
dency between pixels as seen by the user. Thus we
propose an alternative extension which allows to sep-
arate grey-level (or radiometric) entropy from spatial
entropy.

$. SPATIAL ENTROPY

We will abundantly make use of a vocabulary intro-
duced in Markov Random Field theory.

Let s denote a site (or pixel), with neighbouring
pixels r belonging to the neighbourhood V of s. Every
pixel is characterized by the following elements:

e its grey-level: n,, with n, having values in N =

{0...v};

e alabel: I,, which denotes its belonging to a class
of possible objects in the image (this is the result
of a recognition process) L = {1...A};



o what we call the color of the neighbourhood (i.e.
a description of the context of the pixel): w,,
which takes its values in V = {0,.., A%V},
This color may be economically described by the
cliques contained in the neighbourhood V.

Let g denote the probability for the site s to have
the characteristic values n,,l,,v,: ¢ = proba(n,,l,,v,),
with the normalization constraint:

)IPIDITESE
n,€ENIl,eLv,eV
The global system entropy is defined as:

E=- Z z quogq.

n,eNI;€ELv, eV

(2)

For each class (or label), a class marginal probabil-
ity is defined as:

g(n,1,v)
iEN Ejev a(3,1, )

which produces a global entropy of class-i:

e = — Z Z p(n, v|l)log p(n, v|l).

neN veV

p(n,v|l) = D (3)

(4)

We may also derive the classical class histograms
as:

p(n|l) = Z p(n,v|l) = Z

veEV veV

[ g(n,1,v)
LZ.-GN Ejev q(3,4,3) |’
(5)

and neighbourhood class histogram:

= n,v|l) = - L)
p(v|l) ~1§VP( yoll) HZE[:V _EiEN ngv q(i,l,j)} ,

(6)
which allow us to define the radiometric (or grey
level) entropy of class I:

a=— Y p(nll)logp(nll),

nenN

(M
and its spatial entropy:

G =-)_ plv|l)log p(v]}).

veV
Radiometric entropy is limited to:

e < logN,
whereas spatial entropy is limited to:

G <logV. (10)
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They reflect different qualities of the classification.
Radiometric entropy expresses how poorly homogeneous
a class is. In a perfect case, with ideal signals concen-
trated on a small number of grey-tones, the radiomet-
ric entropy is very small and hopefully it tends to zero
when all the pixels belonging to the same class have
the same grey-level. On the contrary in a more com-
plex situation, the class will be spread nearly uniformly
on the whole range of grey-tones, providing a high en-
tropy, very close from the image radiometric entropy.

On the other hand, spatial entropy expresses how
irregular the pixel context is. To have a low spatial en-
tropy a class may be spread in another (for instance in
a composite texture), or grouped in compact clusters,
but this configuration must be the statistically domi-
nant everywhere in the picture.

4. APPLICATION TO PICTURE

PROCESSING

The first illustration we want to make is the use of spa-
tial entropy to measure the effect of regularization (or
smoothing) algorithms. We have chosen the domain
of noise filtering by means of local filters, and we com-
pare the efficiency of several local filters: low-pass filter
(mean filter), median filter (with 2 different windows :
3x3 and 5x5 pixels), morphological filter (combination
of an opening and a closing in 8 connectivity), and Na-
gao filter (a quasi-optimal optimal filter on adaptive
windows).

Figure 1: Original text corrupted with noise.

Our experiment is made with a highly noisy im-
age of a text (Fig.1). The best threshold o provides a
segmentation (Fig.2) which allows one to measure the
radiometric €;,x and the spatial (in 4 connectivity) (ink
entropies of the dark component below the threshold.
After applying any smoothing filter, using the same
threshold o, we may measure the effect of filtering by



means of the variation of radiometric and spatial en-
tropies. The radiometric entropy can be measured in
two ways :

e first by measuring the histogram of the original
image, using the mask provided by thresholding
the smoothed image, denoted by ¢!

ink’

o or by measuring the histogram of the filtered im-
age, using the same mask, denoted by €”;nx.

As expected, the spatial entropy after smoothing
(Cinz) strongly decreases, proving that filtering makes
the contours more regular (cf. Table 1). On the con-
trary, a small increase of the radiometric entropy €
(approximately 0.5 bit/pixel) clearly proves that the
classification is degraded by the fact that some pixels,
lying on the border of a class are converted to the other
class because of smoothing. The difference between ¢
and €” measures the effect of correction of the grey level
by filtering.

filter € ¢ ¢ e € e —¢
original 6.88 | 1.51
median 3x3 0.81 | 7.43 | 6.57 0.86
median 5x5 0.68 | 7.53 | 6.34 1.19
mean 0.75 | 7.46 | 6.51 0.95
morpho. 0.69 | 7.77 | 6.61 1.26
Nagao 1.01 | 7.28 | 6.31 0.87

Table 1: Effect of several filters on the radiometric
and the spatial { entropies of the dark class of image
of Fig.1 after filtering.

Figure 2: The original text image thresholded at & =
147.

214

wfagfa 1 & fmfy 1 &
wifaR 3 W andfoR @t
§r (aifaat @ @t gadfamt o
uﬁdmuﬁrﬁtm

Figure 3: Result of thresholding at & = 147 the original
image smoothed by a 3x3 median filter (left), and a 5x5
median filter (right).

5. APPLICATION TO THE CONTROL OF
CONTEXTUAL ITERATIVE
CLASSIFICATION

Iterative contextual classification methods, like label
relaxation, Markov Random Fields (MRF) or simu-
lated annealing are often used to improve a conven-
tional classification made on radiometric criteria only.
They work as a second stage iterative re-classification
which modifies the class of pixels surrounded with in-
consistent context [2]. As a consequence, this second
stage generally degrades the first classification from a
radiometric point of view, for the sake of a better spa-
tial coherence. They are specially appropriate when
the signal is corrupted by noise (making the radiomet-
ric classification unreliable), and when strong assump-
tions exist on the spatial coherence of the detected ar-
eas. In this case, they are less blind than the filtering
techniques which have been seen in the previous part.

The evolution of such a re-classification process is
well captured by the behaviour of radiometric spatial
and global class entropies: radiometric entropy usually
grows up, expressing that some disorder is created in
the class when introducing pixels with odd grey levels.
On the contrary, spatial entropy, initially reflecting the
chaos of a non-contextual classification, regularly de-
cays. Depending on the algorithm used, global entropy
may follow different evolution, either a regular decay or
a more irregular one, but it usually drops down when
the algorithm converges to a local or global solution.
From the examination of these curves, fruitful informa-
tion may be obtained when comparing algorithms. Be-
sides the quality of the convergence point (which is im-
mediately reflected by the asymptotic level), the speed
of convergence, and its regularity are available for the
user.

The demonstration is made with a detection prob-
lem in X-rays angiographic medical images where 2



classes are looked for: blood vessels which appear clearer

because of contrast product, and background (bone
and soft-tissues of the brain) (Fig.4). Starting with
a coarse classification obtained by segmenting the his-
togram (Fig.5), the contextual classification is provided
by a MRF, using an Ising model in 4-connectivity. The

class conditional histogram (vessel or background), which

are necessary to express the attachment to data in the
Ising model, were learnt on training zones and mod-
elized with normal distributions. The optimization was
made using simulated annealing to guarantee an opti-
mal convergence (Fig.6).The experiment compares sev-
eral different simulated annealing schemes with differ-
ent parameters (initial temperature 7', and ratio of
temperature decay p). The evolution of the blood-
vessel class global entropy is plotted versus the number
of iterations (Fig.7 and 8). Fig.7 presents the global
entropy decay along iterations for class 1 (background)
and class2 (blood-vessels) for several different initial
temperatures and different decreases in temperature.
For a similar ultimate convergence value, we see the
benefit of a rather fast decay in temperature (p = 0.80)
which provides a gain in convergence time. On Fig.8
is presented the evolution of the only spatial entropy
of class 2 (blood-vessels). We see that a high initial
temperature (right curves, T = 20) provides at first a
serious disorder (high spatial entropy), which is slowly
decreased to the final limit value. This disorder will
make disappear nearly all information issued from the
initial classification, and allows simulated annealing to
be independant from the initial conditions.

Figure 4: Original brain angiographic image: we are
interested in detecting the blood-vessels which appear
as clear parts because of contrast product.
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Figure 5: After histogram segmentation, a first classi-
fication is obtained, on which a contextual reclassifica-
tion is made.

Figure 6: Final classification using a MRF with a sim-
ulated annealing optimization stage with 77 = 4 and
p=0.9.



Class 1 globel entropy Class 2 global entropy
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Figure 7: Global class entropies for class 1 (left) and
class 2 (right) for several different parameters of the
simulated annealing versus the number of iterations:
the initial temperature T and the geometric decay law
of temperature T'.

Clase 2 spatial eatropy Class % spatial eatropy
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Figure 8: For class 2, the spatial entropy may increase
when the initial temperature is too high.
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6. CONCLUSION

We have shown the possible use of spatial entropy to
control picture processing algorithms. This entropy
well reflects the statistical behaviour of the context of a
pixel. It provides a complementary information to the
more conventional radiometric entropy which is usu-
ally measured. Alternative use of this spatial entropy
have been independently proposed by means of Markov
random fields for remote sensing applications [1].
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