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ABSTRACT

In the framework of fuzzy set theory, we propose: (i) a
classification scheme for multi-modality image fusion, where
membership degrees to a class issued from several images
are combined before taking a decision, (ii) a classification
of fusion operators, depending on their behaviour.

1. INTRODUCTION

In a context of multi-modality image fusion, fuzzy set the-
ory appears as a powerful framework since it provides many
tools adapted to this task. Its main properties, which will
be exploited in this paper, are the following:

o It provides a way to represent imprecise and uncer-
tain information [16], including its characteristics in
terms of redundancy and complementarity which are
key features in data fusion.

It is able to manage knowledge about the sources
(conflict, reliability).

It provides a large series of operators for combining
information issued from different images, along with
decision rules.

At last, this theory is well adapted to image process-
ing since the natural spatial interpretation of fuzzy
sets leads to efficient representations of imprecise struc-
tures or classes in pictures [10].

In the next section, we briefly describe a scheme for
fuzzy classification from several images where the decision is
taken only at the end of the fusion process. In section 3, we
propose a classification of fuzzy fusion operators depending
on their behaviour and provide some criteria for choosing
an operator adapted to the problem at hand. In section 4,
some applications will illustrate our purpose.

2. IMAGE FUSION BY FUZZY

CLASSIFICATION

The principle of fuzzy classification consists in assigning to
each point a membership degree to each class of interest,
depending on characteristics of the point and of the classes.
Generalizing this principle to multi-modality images avoids
to define a metrics on the space of characteristics. Following
this idea, we propose a scheme for classification by multi-
modality image fusion which consists of 4 steps:

1. define characteristics of points and classes extracted
from each image;

0-8186-6950-0/94 $4.00 © 1994 IEEE

628

2. define a membership function p(z) in {(,1] which de-
scribes, for each image j, the membersnip degree of
z to the class ¢; this step plunges all pixel and class
information in [0,1], such that they become compara-
ble, whatever the characteristics or the images they
are issued from;

. fuse the membership functions of all images related to
each class ¢, in order to obtain a global membership
function pi(z) to the class i;

. take a decision in favour of a class i following one or
several of following rules (C denoting the number of
classes):

(1)

()
(3)

The first rule (equation 1) chooses the class to which
z has the highest membership. The tw> other rules
control if the decision is strong enough (equation 2)
(d is a decision threshold) or discriminating enough
(equation 3) (7 is a discrimination threshold).

[of
#i(z) = max p;(z),

“i(z) > d:

ui(z) ~ max p;(z) > 7.
J#

This scheme avoids to take a decision on each image
separately, which could lead to conflictual decisions diffi-
cult to manage a posteriori since all numerical information
is lost. It represents imprecision and uncertainty through
fuzzy membership functions and deals with them until the
last step of the process.

In the first step, commonly used characteristics are pixel
grey-level from each image, texture indices, response to
a detector of particular structures, etc. They are usually
extracted by image processing techniques (not necessarily
fuzzy): for instance the class ”road” in a satellite image can
be characterized by the response to a morphological top-hat
transform or to a Duda Road Operator.

The definition of 4] can be obtained for example from
a fuzzy classification [1], [2] performed on each image sep-
arately, without taking any definite decision about the be-
longing of z to a particular class. Several forms can be
used (fuzzy C-means, fuzzy k-nearest neighbours, analyti-
cal form whose parameters are determined fro:n the data).
It can also be obtained directly by a mapping into [0,1]
from the grey level domain, representing the characteristics
extracted using some image processing operatcr.

The fusion operators involved in the third step will be
described in the next section.



3. COMBINATION OPERATORS: A REVIEW
WITH CLASSIFICATION

Any numerical fusion operator (i.e. a function F(a,b) com-
bining two pieces of information e and & in [0,1]) may have
three kinds of behaviour: conjunctive (if F(e,b) < a and
F(a,b) < b), disjunctive (if F(e,b) > o and F(a,b) > b),
compromise (if F(a,b) is between a and b) [6], [15]. We
propose a classification of fusion operators in three classes,
depending on their behaviour. Details may be found in [4].

3.1. Context Independent Constant Behaviour (CICB)

operators

The first class (called context independent constant be-
haviour) is composed of operators which have the same be-
haviour whatever the values of the information to combine,
and which can be computed only from the values of @ and b.
They are ordered independently of the values of ¢ and & (if
F and F' are two operators in this class, we have either
¥(a,b), F(a,b) < F'(a,b), or ¥(a,b),F(a,b) > F'(a,b)).
Examples of fuzzy operators belonging to this class are:

¢ triangular norms (9], [11], which generalize set inter-
section to fuzzy sets (like min(a, b), ab, max(0,a+b—
1)); they always have a conjunctive behaviour;

o triangular conorms (9], {11}, which generalize set union
to fuzzy sets (like max(a,b), a + b - ab, min(1,a+ b));
they always have a disjunctive behaviour;

¢ means (median, geometrical or arithmetical mean,
weighted means, fuzzy integrals, etc.) [6], [14], [15],
[8]; they always behave in a compromise way.

Let us mention that some operators used by other data
fusion theories belong to the CICB class. Examples are the
product used in probabilistic and Bayesian approach or the
orthogonal sum of Dempster and Shafer in evidence theory
[12].

3.2. Context Independent Variable Behaviour (CIVB)
operators

The second class is composed of operators which are context
independent like in the first class (i.e. F(a,b) depends only
on a and b) but whose behaviour depends on the values of a
and b. Examples of fuzzy operators belonging to this class
are the associative symmetrical sums (but median) [6], [15]:
they behave in a conjunctive way if max(a,b) < 1/2,in a
disjunctive way if min(a,b) > 1/2, and in a compromise
way if a < 1/2 and b > 1/2 (or the reverse).

Note that the operators used in MYCIN for combining
certainty factors [13] are also CIVB (they are disjunctive if
a > 0 and b > 0, conjunctive if ¢ < 0 and b < 0, else they
have a compromise behaviour).

3.3. Context Dependent (CD) operators

The third class is composed of operators which are con-
text dependent, i.e. which are computed not only from a
and b but also depend on a global knowledge or measure
on the sources to be fused (like conflict between sources, or
reliability of sources). For instance, it is possible to built
operators which behave in a conjunctive way if the sources
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are consonant, in a disjunctive way if they are highly dis-
sonant, and like a compromise if they are partly conflicting
(for instance, they may be derived from operators used in
possibility theory or artificial intelligence [7]). Such opera-
tors are particularly interesting for classification problems,
since their adaptive feature makes them able to corabine in-
formation related to one class in one way, and information
related to another class in another way.

3.4. Choice of an operator

The above classification provides an efficient way to choose
a class operator, by analysing the problem at hand in terms
of expected behaviour in the fusion process. In each class,
the choice may then be refined depending on the required
properties of the operators, which can be interpreted in
terms of data fusion. Let us give some examples.

¢ Commutativity is generally satisfied by the operators,
although human reasoning do not always corbine in-
formation in a commutative way.

o Associativity, although not always necessarv, makes
the order of combination not important, and thus fa-
cilitates the combination of more than 2 pieces of
information.

e The existence of a unit element may be imposed if we
want some values will have no influence on the result
of the combination.

e On the contrary, the existence of a null element will
be imposed if we want a value to determine com-
pletely the result of the combination.

o Idempotence expresses a stability of the operators
which satisfy this property (like mean operators) if
a value occurs twice. It may be desirable i case of
strong dependence between sensors. This property is
opposed to the Archimedian property which expresses
that the information is reinforced or weakened if it oc-
curs twice. For instance, if two independent reliable
sensors provide the same information about a fact,
we tend to trust this result more than each individ-
ual information.

o Excluded middle and non-contradiction have a strong
interpretation in terms of reasoning. Examples where
excluded middle is not desirable occur in problems
where we want to introduce ignorance about an event
and its contrary (this is typically one of the key fea-
tures of Dempster-Shafer evidence theory).

Non-associative operators deserve a special wttention
when combining more than 2 pieces of information. Given
an operator F acting on two variables, two ways may lead
to the combination of n pieces of information:

¢ the first way consists in adding successively pieces of
information, according to the following formula:

F(Z[,Z:g, ...,:l:n) = F[F[...F[F(zl,ZQ),Zs]. .],Zn],

for a given order of the z;’s, chosen in an adequate
way (for instance, following the occurrence order, or
according to some priorities between information, or
depending on the conflict between information);



¢ the second way consists in deriving a combination
rule for a given number n of variables, by mimicing
the rule for two variables; for instance, the general-
ization of the arithmetical sum is straightforward and

leads to:
zy+ 22+ ...+ Zp

n

As far as behaviour is concerned, it can be easily proved
that the generalization of a CICB operator to n variables is
still CICB with the same behaviour, even for non associative
operators. For CIVB operators, they remain CIVB but the
rules governing their behaviour may be more complex than
their equivalent for 2 variables. Examples can be found in
(4]

Another criterion for choosing among the operators is
their behaviour with respect to decision (dealing with con-
flicting situations, decisiveness, discrimination power, etc.).
Details can be found in [4], and we provide here only a
few points. Let us take the example of the combination of
3 variables combined by the arithmetical sum. It can be
shown that if all values are of the same order of magnitude
(i.e. consensual information), all possible combinations are
also of the same order of magnitude. Therefore, the choice
of one particular combination (since the operator is not as-
sociative) will probably not be crucial. On the contrary, if
the information is conflictual, the variations may be more
significant. For instance, if z; is very low and z, and z3
are both high and close to each other, then combining the
consensual values first will provide a significantly smaller
result (denoted by R,) than combining conflictual values
first. Moreover, the value (z, + z2 + z3)/3 provided by the
second approach is farther from the non conflictual values
than R;. As far as decisiveness is concerned, the problem
is to qualify the decision taken from the u;’s obtained by a
fusion operator u; = F(p],j = 1...1) where [ is the number
of images. A strong indication is provided by the fact that
most of the operators can be ordered independently of the
values to be combined. For instance, we have for T-norms:

V(a,b), max(0,a + b — 1) < ab < min(a, b).

Extreme operators will generally be less decisive than oth-
ers. For instance a large T-conorm like min(1,a + b) (resp.
a small T-norm like max(0,a + b — 1)) is likely to be satu-
rated to value 1 (resp. 0) when combining several sources,
and thus will not well discriminate among the u;’s. A last
remark concerns the choice of the decision threshold and of
the discrimination threshold, which, for analogous reasons,
cannot be chosen independently of the operator.

4. APPLICATION IN MULTI-MODALITY
IMAGE PROCESSING

These operators are commonly used in artificial intelligence,
in particular for pooling expert decisions [7]. However, very
few applications are developed until now in image process-
ing. Let us mention an example in artificial vision [5] and
one in image fusion [3]. Examples showing the interest of
our approach can be found in medical and satellite multi-
modality imaging. In both domains, the increase of imag-
ing techniques, which provide different types of information
about a phenomenon, underlines the role of data fusion for
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interpretation and diagnosis help. In medical imaging, ap-
plications concern tissue classification, segmentation, dis-
ease detection (for instance in multi-echo MRI), anatomical-
functional correlation (like TEP + MRI). In satellite imag-
ing, examples can be found for classification and detection
of various structures (roads for instance) in inulti-spectral
SPOT or Landsat images. These applicaticns prove the
interest of data fusion for the classification, :ince a better
discrimination between classes results. The dea is to ex-
ploit en one hand redundancy between images to make the
decision more certain, and on the other complementarity
to increase the global information. Fuzzy niodelling is a
well adapted tool for this task. Also the vaiiety of fuzay
fusion operators allows to take into account, in the same
model, several kinds of information and to dcal with a lot
of different situations. In particular, a priori information,
like reliability of a given source when reporting on a phe-
nomenon (class, structure), can be adaptative y introduced
in the operators, for instance by means of a we ighted mean,
or of a CD operator.

We will provide here only a very simple example, which
shows that the concepts proposed in the previous section
may help for the choice of an operator. It conzerns classifi-
cation from dual echo brain MRI (figure 1). These images
provide different contrast between tissues. In the first echo,
the cerebrospinal fluid (CSF) in the ventricles and sulci
have the highest grey values whereas they have the lowest
grey values in the second echo, with a very low contrast to
the white matter. Membership functions to tle three main
classes in the brain (ventricles + CSF, grey raatter, white
matter) are simply derived from grey values (figure 2). Re-
sults are shown on figure 3 for the ventricles (« omputations
are performed within a mask corresponding to the brain).
It appears that the posterior part of the ventricles have high
membership degrees in the first image; in the second one,
parts of the white matter have also quite high membership
values, and the anterior part of the ventricles (:ornu anterii,
CA) are not well delineated. The membership functions re-
sulting from the fusion for T-norms min and product, for
T-conorms max and algebraic sum, for arithraetical mean
and compensatory operator min® max' ™Y for v = 0.5 are
shown respectively on figures 4, 5, 6 for the ventricle class.
It appears that the posterior part of the ventricles are better
differentiated from the other classes with T-no-ms, whereas
the CA have higher membership values with algebraic sum
or compensatory operator (see zoom on figur:8). The de-
cision taken by rule 1 leads to the classificati>n shown on
figure 7. If we look at the CA, it is clear that this part
is very difficult to classify correctly. When ccmbining the
membership functions of all classes with the same operator,
the CA are classifiied as white matter (see th: example of
min on the left of figure 7, analogous situatiors occur with
other operators). On the contrary, if the operator can be
adapted to the classes, better results can be obtained for
the CA, as it appears on the left of figure 7, where the al-
gebraic sum has been used for the ventricles and the min
for the other classes (see zoom on figures).

This proves the interest of CD operators. Of course, a
lot of work needs to be done in order to derive she adequate
operator automatically.



Figure 1: Brain MRI images (2 echos). Fligu;e 4: Fusion with T-norms min and product (ventricle
ciass).
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Figure 2: Membership functions to the 3 classes on each
image.

Figure 5: Fusion with T-conorms max and algebraic sum
(ventricle class).

Figure 3: Membership function to the class ventricles on Figure 6: Fusion with arithmetical mean and compensatory
each image. operator (ventricle class).
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Figure 7: Classification obtained after decision with rule 1
for the min operator (left) and for the algebraic sum for the
ventricles and the min for the other classes (right).

5. CONCLUSION

We proposed in this paper a scheme for fuzzy classification
for multi-modality images, whose main advantages are:

o the use of fuzzy sets to represent imprecision inherent
to the images and to classification problems,

e the rejection of the decision step at the end of the
process, which avoids to take premature decision on
each image separately (which often leads to conflicts
difficult to manage without any additional informa-
tion).

Then we proposed a classification of the fusion operators
and discussed the aspects related to the choice of an oper-
ator by given criteria related to decision making. To our
opinion, fuzzy operators deserve to be more developed, in
particular CD operators, which are still in their infancy but
are well adpated to classification problems from heteroge-
neous sources.
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