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ABSTRACT

In this paper we propose a new unsupervised method
for estimating class membership functions from sta-

tistical data. It combines in an original way infor-

mation derived from the histogram as well as prior

knowledge of the requirements that the functions

must satisfy and that cannot be derived from the

histogram. The method has been tested success-

fully on MR brain images, and applications to im-

age fusion are illustrated.

1. INTRODUCTION

The aim of the work reported here is the estima-
tion of membership functions for classes of interest
in image fusion problems, more precisely low level
fusion based on pixel characteristics. We consider
mainly grey-level characteristics. Usually, the es-
timation aspect of the fusion problem is handled
by supervised methods, in this paper we propose
an unsupervised method. Our main idea is to in-
troduce intuitive requirements on the membership
function shapes. Typically, a pixel having a value
which has a low occurrence frequency in the im-
age may belong completely and without ambiguity
to one class. This is generally not taken into ac-
count by methods that try to produce membership
functions shaped as modes in the histogram.

This paper is organized as follows. In section 2
we present a short review of existing methods for
transforming a histogram or a probability distribu-
tion into a possibility distribution or a membership
function. In section 3 we describe the proposed
method, based on criteria accounting for both the
distance between distributions and for constraints
on their shape. In section 4 we present a simple
application of this method to an image fusion prob-
lem in MR brain imaging. We illustrate how the
estimation can serve for several fusion methods.
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2. THE TRANSFORMATION FROM
HISTOGRAMS TO MEMBERSHIP OR
POSSIBILITY FUNCTIONS

From a probability distribution to a possi-
bility distribution: Several methods have been
proposed in the literature for transforming a prob-
ability distribution py into a possibility distribu-
tion mx (and conversely), both distributions being
discrete (1 < k < K) [10], [9], [11]. The main con-
straints that are used for deriving such transforma-
tions are e.g.: preservation of ranking, normaliza-
tion. probability-possibility consistency: mp < pg
(8] or S°K_| prmx = ¢ where ¢ is a constant in [0.1]
[14] or uncertainty conservation using entropy [11].
More details on these methods and on their com-
parison can be found in [11].

From statistical data to membership func-
tions: Defining membership functions from statis-
tical data is typically done using the now classi-
cal C-means algorithms [2], although the shapes of
the obtained membership functions are not always
adequate for image fusion problems [3]. Another
method consists in defining membership functions
by optimizing certain criteria, e.g.: fuzzy entropy
[6], minimum of specificity and consistency [7].

Using a posteriori criteria: Other approaches
consist in minimizing classification errors. They
are based on "a posteriori criteria”, since they in-
volve the whole classification process, including the
decision rule. Such a method is proposed in {13],
using fuzzy integrals for the combination step.

Limits of existing methods: The methods pre-
sented in the first two paragraphs are used to op-
timize a priori criteria in the sense that the es-
timation is performed without any knowledge of
the subsequent steps. Therefore, the criteria are
simply based on a "resemblance” between the his-
togram or the probability distribution and the de-
sired function. On the contrary, the methods of
the third paragraph include the whole fusion pro-
cess in the estimation: a posteriori criteria are used
in the form of a minimization of classification er-
ror. This assumes that the complete strategy of
fusion, classification and decision is known before
the estimation step is performed.

Since our aim has been to develop an estimation
method for class membership functions that can
be used with different fusion methods, we prefer



methods of the first type. However, we found some
drawbacks with existing methods (methods that
are not dedicated to image fusion) when consider-
ing our application to image processing. Most crite-
ria provide a function that depends on the shape of
the histogram. Accounting for frequent situations
where a pixel may belong completely and without
any ambiguity to a class while having a grey-level
with low occurrence frequency thus becomes dif-
ficult. Moreover, these methods usually compute
one possibility distribution or membership function
from a histogram, and do not allow for a direct
computation of all class membership functions in a
global way. In the next section, we propose criteria
that deal with these problems.

3. FROM GREY-LEVELS TO CLASS
MEMBERSHIP FUNCTIONS

In this section we propose a new method for the
estimation of membership functions from grey-level
histograms. This method is well adapted to the
classification of homogeneous regions in images and
can easily be extended to any other characteristic,
including texture indices, e.g. for classification of
textured regions. We assume that we have several
images of the same scene that have to be fused in
order to make a decision, the decision here consists
in a classification of the scene into several classes
of interest. The aim of the estimation is to define,
for each considered image, a membership function
for each class of interest represented in this image.
We first define the criteria that the membership
functions should verify, and then how to optimize
them.

3.1. Criteria

We suggest to use two types of criteria simultane-
ously. The first type is based on a "resemblance”
between the grey-level histogram and the member-
ship function in the form of a distance between the
two distributions. This type is very close to existing
methods. The second type accounts for prior infor-
mation on the expected shape of the membership
function, in order to deal with problems mentioned
above concerning low occurrence frequencies. This
calls for a parametric representation of the func-
tions. The combination of these two types of crite-
ria leads to a simpler interpretation of the obtained
functions that fits better with the intuitive notion
of membership.

As membership functions we chose simple trape-
zoidal functions. They depend on a small num-
ber of parameters thus allowing for easy estima-
tion while preserving the robustness expected from
membership functions. We will denote by p; the
membership function for class i (1 < ¢ < n, where
n is the number of classes). p; depends on four
parameters a;, bi, ¢;, d;, as illustrated in figure 1.
These parameters are subject to some ordering con-
straints: Vi,1 < ¢ < n,a; < a;4,, and similar in-
equalities for the other parameters.

One of the prior information we want to intro-

membership values
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Figure 1: Shape of the membership functions:
trapezoidal function depending on four parameters.

duce is the fact that pixels belonging to a class ¢
without any ambiguity should have a membership
value for that class equal to one, whatever the oc-
currence frequency of its associated characteristics.
Therefore, we propose a two step approach: in the
first step, we estimate functions g/ that minimize
a distance criteria to the histogram: in the second
step, we derive p from p' in order to include this
prior information. The functions p} are taken as
trapezoidal functions having a maximum value h;.
We define the objective function by:

SN fe) = pi@)

i=1lrceD,;,

(1)

where x denotes grey levels, f(z) its occurrence fre-
quency in the image, and D; the interval on which
the squared differences are computed for each class
i. Important features in this formulation are:

o All functions are computed simultaneously.

o For each class, only the points in the his-
togram that are concerned with this class are
taken into account, through the interval D;.

The computation of D; is done according to the
desired properties of the membership functions: (1)
in the area of ambiguity between two classes (i.e.
where two membership functions overlap), there
should be no constraint on the fit between f and
the p!’s; (ii) for the extreme classes (those with
lowest and highest grey values respectively), the
#4’s should not follow the shape of the histogram
for the points showing no ambiguity (they usually
have low frequency but should have high member-
ship values). According to these constraints, each
interval D; is defined as follows:

1. For I < i < n: we define k;_1; and ki ;11
as the points at which the functions p}_; and
u!, and g} and p} ., respectively intersect, i.e.
such that:

pi_y(kic1i) = pilkic1i),

pigr(Riipr) = pi(hiiva).
Thus D,’ 18 deﬁned by [ki—l,i:ki,i+1]~
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2. For i = 1 (class with lowest membership val-
ues): we impose a; = by, and Dy = [¢;, ky 2]
where k2 is the intersection point between
py and .

For ¢ = n (class with highest membership val-
ues): we impose ¢, = dp,, and Dy, = [kn—1 1, bn]
where kj,_1 p 1s the intersection point between

Hn_y and gy
Once the functions u; have been estimated in

order to minimize the objective function, the mem-
bership functions are derived by:

/JI-(I)A

i

Ve, pilz) (2)

3.2. Optimization method

The optimization of the objective function is per-
formed using simulated annealing in a way similar
to the one suggested in [6]. Figure 2 illustrates
the obtained results, for the estimation of 3 classes
from the histogram of the image presented in the
right part of figure 3.
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Figure 2: Result of the estimation of three classes
(first step: estimation of pu} and second step: de-
riving ;) on the second image of figure 3.

As already stated, one of the advantages of the
proposed method is that the optimization is per-
formed globally for all classes. We only need to
know the number of classes of interest, and the
method is thus unsupervised. Moreover, it takes the
histogram into account only in the areas where the
histogram carries information about the member-
ship fuctions. Elsewhere, the membership func-
tions are defined by the parametric shape. We
compared this method with a supervised method.
where each membership function is estimated sep-
arately from a learning area for the corresponding
class. The objective function is of the same type,
but computed using the conditional histogram of
the class only. We observed that this method is
more time consuming, needs learning areas, and is
highly sensitive to the choice of these areas.

4. APPLICATION TO BRAIN IMAGE
FUSION

We applied the proposed estimation method to an
image fusion problem in medical imaging, where
we combine dual-echo brain MR images in order to
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provide a classification of the brain into 3 classes:
brain, ventricles and CSF, and pathology. These
images are shown in Figure 3. The membership
functions for these 3 classes have been estimated in
a completely unsupervised way on both images, as
described before. We then use these membership
functions in 3 different fusion schemes.

Figure 3: Dual echo MR image of the brain, show-
ing three main classes: brain, ventricles and pathol-
ogy (the white area on the right image).

Markovian fusion: A first fusion scheme has been
developed in the framework of Markov random fields.
It consists in combining in a conjunctive way infor-
mation provided by both images and a regulariza-
tion term (see [1] for more details on the fusion
algorithm). Here, we define the potential func-
tions used in the energy to be minimized as the
fuzzy complementation of the estimated member-
ship functions (i.e. a high membership value corre-
sponds to a low energy and conversely). The results
are shown in Figure 4.

Figure 4: Classification result obtained using a
Markovian method.

Fuzzy fusion: Next we use the results obtained
with the automatic estimation of membership func-
tions for combining these functions with fuzzy op-
erators. One of the advantages of fuzzy fusion is
the large set of operators to chose from depend-
ing on the type of information to be combined [4].
Here, since both images provide similar informa-
tion about the ventricles, we use a mean operator
to combine the membership functions obtained in
both images for this class. Brain and pathology
cannot be distinguished in the first echo and we
obtain only one class for this image, denoted by
ul. In the second image, we obtain two classes de-
noted by p? and g, respectively. We combine
pl and p? using an arithmetical mean again. As
for the pathology, we combine p! and uzath using
a symmetrical sum defined as: ﬁ—’%?ﬁ' This
guarantees that no pathology is detected in the ar-



eas where u;;'ath = 0, and this reinforces the mem-
bership to that class otherwise, in order to include
the partial volume effect areas in the pathology
(this corresponds to what radiologists do). After
the combination. the decision is made according to
the maximum of membership values. The result is
shown in figure 5.

Figure 3: Final decision after fuzzy combination
{note that the decision is taken at each pixel indi-
vidually, without spatial regularization).
Dempster-Shafer fusion: Finally, we Interpret
the results of the automatic estimation as mass
functions and combine them in the framework of
Dempster-Shafer evidence theory [12]. We exploit
an important feature of this theory that allows for a
very flexible modeling of the situation at hand and
does not force the introduction of information not
contained in the images [5]. We do not assign any
mass to the brain and to the pathology in the first
image since it does not discriminate these classes,
but we assign u! to the union of these two classes.
The ambiguity will then be solved through the com-
bination. The mass functions for the two images
are combined using Dempster rule of combination,
and decision is taken according to the maximum of
belief. The result is shown in figure 6.

Figure 6: Dempster-Shafer fusion: result of deci-
sion after combination with Dempster rule (the re-
sults are quite similar to those obtained by fuzzy
fusion. and better in the areas affected by partial
volume effect around the pathology).

5. CONCLUSION

We have proposed in this paper an automatic method
for estimating class membership functions from pixel
characteristics. It takes into account histogram in-
formation while preserving characteristics of typ-
ical membership functions. We have shown that
this method can be used for low-level image fu-
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sion, using different methods, and we obtained very
promising results on dual-echo brain MR images.
The method constitutes an improvement over ex-
isting approaches, where the estimation step is of-
ten performed in a supervised way. Moreover, ap-
plying the same estimation step for different fusion
methods allows for a comparison of the other steps
of these methods (combination and decision}; the
provided example already illustrates different com-
bination behaviors depending on the chosen fram-
work. This will be the scope of future work.
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