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ABSTRACT

Continuous label segmentation approaches have
recently attracted much interest as they provide
a formalism for handling image artifacts due to
the partial volume effect which is common in for
instance medical images. In this article we pro-
pose a new approach to this type of segmentation.
Our work represents an extension of the now clas-
sic Markovian Bayesian discrete label segmentation
approaches and provides good results on synthetic
images simulating the presence of partial volumes
as well as on real patient MR images.

1. INTRODUCTION

A problem with virtually all medical imaging de-
vices is the partial volume effect: if the support of
a pixel covers the boundary between two or more
tissues, then the measured intensity value for this
pixel will stem from a mixture of partial contribu-
tions from all the involved tissue types.

One way of segmenting these images while tak-
ing the partial volume effect into account is to la-
bel each pixel with a continuous label vector f =
(£1,€2,...,&N.) where N, is the number of classes
and under the conditions that Zf;l én = 1 and
that each element &, € [0,1]. This can be inter-
preted as assigning a vector to each pixel in the
segmented image describing the percent content of
each tissue in this pixel.

Most of the work on segmentation of medical
images has been done using algorithms that make
‘hard decisions’ concerning tissue type, i.e. that
label a pixel as being of the most predominant tis-
sue type in the pixel. This can reduce precision
of morphometric measurements especially in thick-
slice acquisitions where the partial volume effect
can be considerable. Numerous methods aiming at
solving the partial volume problem have therefore
been proposed.

Clark et al. [3] use a fuzzy segmentation ap-
proach based on the fuzzy c-means algorithm. Choi
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et al. [2] model the partial volume effect by the
mizel model and propose a MAP estimator for seg-
mentation (see also [9]). Johnston et al. [6] have
extended an approach similar to that of Choi et al.
to 3D. Santago et al. [8] use a statistical model
for the partial volumes together with a finite mix-
ture density description of the tissues (see also [7]).
Finally, Vincken et al. [10] propose a multi-scale
approach in which partial volume voxels are ana-
lyzed at a sub-voxel resolution.

We start this paper by repeating the fundamen-
tals of Bayesian discrete label segmentation meth-
ods, we then show how a slight change of these
methods allows for continuous label segmentation.
Finally, we present results on synthetic and real
images.

2. BACKGROUND

Let I = i be a particular realization of a process
I, the image to be segmented, and L = [ a par-
ticular realization of a process L, the segmented
image. Let s be any particular site in an image.
Given [ = i, we seek the segmented image, L = [,
which maximizes the posterior conditional proba-
bility P(L = I|I = i). Using Bayes’ rule, this max-
imization can be performed by maximizing;:

PL=IlI=i)x PI=ilL=)P(L=1) (1)

with respect to ! where the first term P(I = i|L =
l) is the probability of a particular image [ = i
given its segmentation L = [ and the second term
P(L = 1) is the a priori probability of the seg-
mented image L = 1.

Under certain assumptions (see [5] for details)
such as the conditional independence between sites,
the presence of a spatially non-correlated, white,
zero-mean Gaussian noise and that pixels in each
region in the image to be segmented have Gaussian
distributed gray-levels with means g, and vari-
ances oy,, it can be shown that the first term in



eq. 1 is equivalent to:
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Assuming furthermore that the Markovian hy-

pothesis holds for P(L = [), we may use the Hammersley-

Clifford theorem (see [5]) to write the a priori prob-
ability for L as a Gibbsian distribution, thus:

P(L :iE;exp[—U(l)], v=%"v. (3
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where C is the set of cliques of order higher than
one defined on L and V. a clique potential func-
tion. From egs. 1, 2 and 3 we obtain the following
expression that should be minimized with respect

to ls:
> >V

ceC

The two terms of this equation can be interpreted
as describing the clique potential terms defined on
singletons and higher order cliques respectively. We
shall refer to the first term as the data attachment
term F as it is this term that links gray-levels i, ob-
served in / = i to the means y;, of the segmented
regions. We will refer to the second term as the
clique attachment term W as this term is the sum
of all the clique potentials excluding the singletons.
The sum of the terms E and W is often referred to
as the energy corresponding to a particular segmen-
tation.

(4)
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2.1. Data attachment terms, discrete case

As we see from eq. 4, the potential function for the
singletons is Gaussian and if all the assumptions
allowing the deduction of eq. 4 were to hold, this
would effectively be the optimal shape for these
functions. However, these assumptions are rarely
realized in real world images and many authors
have experimented with other forms for these func-
tions. We have previously reported using piecewise
linear potential functions for simultaneous fusion
and discrete label segmentation of multi-echo MR
images in [1] where the data attachment term E in
site s is expressed by:

N;
Ei3() = D Amt, ®mt,) (9m(5))

m=1

(5)

where N; is the number of echoes to be fusioned,
the terms Ap,,, are confidence factors indicating
the confidence we have in echo m representing class
ls, the functions ® are the piecewise linear potential
functions (see fig. 1) and gm(s) is the gray-level in
site s in echo m.
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Figure 1: Potential function ®(m, ,)(gm(s)). The
lower the value of this function for a certain gray-
level g (s), the better the correspondence to the
corresponding class I;.

2.2. Clique attachment terms, discrete case

The calculation of the potential functions for the
higher order cliques is typically restricted to the
second order 8-connected cliques to which site s
belongs, and the clique attachment term in site s
can, in the discrete case, be calculated by:

Wiy= . dil,l)

c|s€Cas

(6)

where Cy g is the set of all second order, 8-connected
cliques on the set S of sites, /; and [, are the dis-
crete labels in sites s and r respectively and d is
some distance measure (in [1] we use d(l,,I,) =

5l #11) ).
3. PROPOSED ALGORITHM

The proposed algorithm is an extension of the con-
tinuous label Bayesian segmentation approach de-
scribed above. We now discuss the necessary mod-
ifications of the data and clique attachment terms
in order to perform continuous label segmentation.

3.1. Data attachment terms, continuous case

In the continuous case, the data attachment term
E in site s is expressed by:

Ni N. :

By =33 Amall = Bpmn)(9m(s)) —&a| (1)
m=1n=1

where N, is the number of classes, £, is the nth

label assigned to site s and the other parameters
as defined before.

Calculating Ey,} in this way therefore amounts
to comparing the value of each element &, of the
label vector {d with the value of the correspond-
ing potential function 1 — ®(p, ). If the vectors
differ from what is expected based on the ®(m n)
functions, this increases the value of the data at-
tachment term and thus represents an unfavorable
constellation. !

Notice that if &, = 1 for a particular n, that is,
only one single tissue is present in the correspond-
ing site, and if this corresponds to a consistent seg-
mentation, then eq. 7 becomes eq. 5 which clearly



shows that eq. 7 is an extension to the continuous
case of eq. 5.

3.2. Clique attachment terms, continuous cas

In the continuous case, the clique attachment term
W in site s is expressed by:

N
Y > dn, )

n=1¢|s€Ca,s

W{s} =f (8)

where &,, and &, are the n-th components of the
label vector £ in sites s and r respectively and d a
distance measure given by d(&,, , &) = [€n, — &r, |
(other distance measures could obviously be used,
this one seems to provide good results in practice).
The argument of the function f is thus simply the
sum of measures of the distances between the label
vectors in each clique to which s belongs.

A number of choices exist for the functional
form for the function f of eq. 8. We have chosen
to use the form f(z) =1 — ﬁ suggested in [4].
This type of function has the advantage of preserv-
ing discontinuities due to its asymptotic behavior
as the argument becomes large.

3.3. Generation of random vectors

Performing the energy minimization by simulated
annealing makes it necessary to draw new vectors &
at random to be used in the minimization process.!

This poses a problem as these vectors must sat-
isfy the conditions Zﬁr;lfn = 1and & € [0,1].
The problem therefore reduces to generating vec-
tors E that are randomly distributed on a part of
the hyperplane given by the equation 22’;1 n = 1.
In practice, we seek vectors { that are uniformly
distributed on this part of the hyperplane.

Several methods exist for generating such vec-
tors, the one we have implemented makes use of the
conditional probabilities of each element &, know-
ing the values of the elements &,,, m=1,...,n— 1.

It is possible to show that these conditional distri-
bution functions are given by the expression:

pEnIEh-“yEn—l (gﬂ l{ly ---,fn—l) =
Nc— L
(1- ]_(né'?)(Nc—n) (1- Zj<n & - fn)NC 1-n
if €. €[0,1- 3,41

0, otherwise

In practice we generate the first N, — 1 elements of
I3 according to their conditional distributions given
above. Element €y, is given by £n. = I—ZHN__‘_Il &n,
the validity of this last operation is easily proved.

!The authors would like to thank Olivier Catoni of the
Ecole Normale Supérieure, Paris, France for his invaluable
help on this problem.
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4. RESULTS AND DISCUSSION

In this section we discuss the results we obtain us-
ing the proposed method. Fig. 2 shows a syntheti-
cally generated projection of a half-sphere that we
use for this study as well as its mesh representation.
Fig. 3 shows the results we obtain segmenting this
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Figure 2: Synthetic image data and its mesh rep-
resentation.
image into two classes, background and half-sphere.
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Figure 3: Segmentatlon result on the syn’chetlc im-
age data. The upper row of images in this figure
shows the segmentation result for the background
class and its mesh representation. The bottom row
shows the same results for the class half-sphere. La-
bels range from 0 to 255 indicating the percent con-
tent of a particular tissue in a particular site s, high
label values indicate high tissue content. Notice
that for the class background this content is high
on the image borders and low as we approach the
central parts of the image. The converse is true in
the result for the class half-sphere.

Fig. 4 shows a subregion of a multi-echo MR
acquisition of the brain of a patient suffermg from
(Q&renoleukodystrophy, the pathological region ap-
pears bright in the rightmost echo. Segmenting
these images into three classes, brain, cerebrospinal
fluid and pathology by fusing the information present
in each of them, we obtain the results shown in fig. 5
where we show only the results for the classes cere-
brospinal fluid and pathology. Notice that whereas
central parts of the tissues all are segmented as be-
longing completely to their respective classes, the
border zones have labels indicating that these re-



glons contain numerous partial volumes. Notice
also that the transitions in these border zones are
smooth indicating gradual changes between classes.
The use of continuous labels in this case allows for
a more precise estimation of true tissue volumes
than could be obtained using a discrete label seg-
mentation.

Figure 4: Real patient MR image data

Figure 5: Segmentation result on real patient image
data.

5. CONCLUSIONS

In this article we have presented a novel approach
to continuous label segmentation. Compared with
fuzzy segmentation approaches such as the fuzzy c-
means algorithm, it has the great advantage of be-
ing more robust to noise due to the regularization
inherent to this algorithm. Comparing our algo-
rithm with that of Choi et al., with which it has
much in common, our method is seen to have sev-
eral advantages. Whereas Choi used Gaussian po-
tential functions, we use piecewise linear potential
functions making it easier to adapt our algorithm
to real world problems. Choi used the ICM algo-
rithm for minimization whereas we use simulated
annealing, this minimization method has the ad-
vantage of guaranteeing theoretical convergence to
a global minimum of the energy. We are able to
use the simulated annealing approach due to the
scheme we propose for rapidly generating random
vectors .’;7 Finally, we introduce the function f
in the clique attachment terms which allows for
limiting the penalty incurred to abrupt gray-level
changes, this has the effect of preserving edges in
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the images. The proposed method provides good
results on synthetic and real patient MR image
data.
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