Regularized reconstruction of 3D high-resolution magnetic resonance images
from acquisitions of anisotropically degraded resolutions.
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Abstract

We present an original method to reconstruct three-
dimensional magnetic resonance images of high resolution
in the 3 directions of space from two anisotropic volumes.
The resolution of each volume is degraded in a different di-
rection. The reconstruction method is based on an optimiza-
tion technique, the constraints being fidelity to the acquired
data on the one hand, smoothness and edge preservation on
the other hand. The interest of such a method is to signifi-
cantly decrease the acquisition time of MR images, without
degrading the spatial resolution.

1. Introduction

Reconstruction of a high resolution image from a series
of undersampled images in order to overcome the limited
resolution of the acquisition system is a subject of great in-
terest for many authors; usually the methods consist in ac-
quiring the scene with subpixel displacements {4], or with
different incidence angles [5].

As opposed to many applications of high resolution im-
age restoration, in Magnetic Resonance Imaging (MRI) the
limit is not due to the acquisition system resolution but
rather to the acquisition time. For example, the patient is
often required to hold his/her breath during the acquisition;
besides, when working on substracted images (difference
between images acquired with and without injection of con-
trast medium into the vessels), the slightest movement of the
patient causes motion artifacts in the substracted image.

Acquisition time and resolution are intrinsically linked
in MRI [8], so the constraint of time limit comes down to a
constraint of resolution.

That is why fast acquisition sequences such as “fast gra-
dient echo’ have been developed; unfortunately they cannot
be applied to angiography.
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Qur study is based on an original acquisition process,
consisting of two series of orthogonal slices with different
directions of anisotropy, and presented in Section 2. Our
aim is the reconstruction of an isotropic volume, complying
with some criteria such as edge preservation and smooth-
ness of homogeneous areas, for applications in segmenta-
tion and quantization of vascular structures.

The degradation process is mathematically described in
Section 3. Section 4 is dedicated to our reconstruction
method. Some examples are presented in Section 5.

2. Acquisition process

In this part we will describe the acquisition principles;
for more details about MRI acquisition, refer to [1, 8].

First of all we shall recall the basics of MRI: in one di-
mension, the acquired signal (called FID: free induction de-
cay) can be expressed as the superposition of many signals
produced by individual voxels, the frequency of each be-
ing proportional to the spatial location of the correspond-
ing voxel: this principle is called “frequency encoding”. In
three dimensions, signal localization uses frequency encod-
ing in one direction, and two types of “phase encoding” in
the other directions. Thus, the signal received is the 3D
Fourier transform of the image we are looking for.

The time required for acquiring a volume of dimensions
N, N, and N, respectively in the directions of frequency
encoding and of both phase encodings is:

where T, is the so-called “repetition time” [8]. This expres-
sion shows well the trade-off between resolution and acqui-
sition time in MRI, excepted in the direction of frequency
encoding.

We propose to acquire two anisotropic volumes with or-
thogonal slice directions, each of them having a high resolu-
tion in both directions of the slice, and a degraded resolution



in the orthogonal direction. The method thus consists in re-
constructing from both volumes a unique volume of high
resolution in all directions.

The principle is shown in a more schematic way in Fig-
ure 1: from the acquired data (sagittal and axial slices), two
anisotropic frontal volumes are computed, from which we
reconstruct one unique high resolution frontal volume. See
Figures 3 and 5 for examples of corresponding anisotropic
slices.

Let V,, N, and IV, be the dimensions along the z, y and
z axes of the volume to reconstruct. The time required to
acquire the first volume, with a degraded resolution along y
(thus of dimensions N, N, N,, with N, < N,), followed
by the second volume, with a degraded resolution along z
(thus of dimensions N, Ny, N,) is:

Ts+a=TR‘Nz'N;,+TR‘NZ~N;.

Acquiring directly the frontal volume with a high reso-
lution would have led to an acquisition time of:

Ty =Tg N, -N,.
Therefore, time can be saved if:
N;/ + Na’e < Ny.
For example, if N; = Ny and N, = N} = N,/3, we

have saved a relative time amount of 33 % in comparison
with a unique high resolution acquisition.
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Figure 1. Schematic problem statement.

3. Modeling of the degradation

The three-dimensional reconstruction problem presented
above reduces to a two-dimensional problem, since we can
process each couple of corresponding slices independently.

Let I be the high resolution image (N, x INV;) we are
looking for. Would we acquire directly this image, then the
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acquired data would be its 2D Discrete Fourier Transform
(DFT) (see Section 2) which we can express as:

;Fy-I-FI,

DFT() = 5
z Yy

the N, x N, matrix Wl—yFy being the DFT operator working

on the columns, and the N, x N, matrix 5 F, being the
DFT operator working on the rows, with:

Fy(m,n) = e 9™ /Ny withm n = 0..N, - 1,

Fy(m,n) = e~ 72w mn/Ne withm,n = 0..N, — 1.

Now let us express I, and [, the two images with de-
graded resolutions respectively along « and y, as functions
of I.

Note that we use “zero-padding” to work with constant
image sizes; this is equivalent to interpolating the low reso-
lution images. Also note that for symmetry considerations
we work with even image dimensions (N; and NV, as well
as IV, and V). Thus:

1
DFT(L) = 57— Fy -1 Fo - Mz,
E y
1
N,-N,

where M, and M, are diagonal matrices of sizes N, x N,
and N, x N, respectively:

{

with (in direction x for example):

DFT(I,) = M,-F,-I-F,,

My=0 UN <i<N-N;
M; =1 else,

Nl

Ny 2

+1

corresponding to the reduced truncature frequency, and 4
varying from 0 to N, — 1 (in the example of direction z)
with the convention that reduced frequencies in the DFT
vary from O to 1. Thus, N, F,;* and Ny F,! being the IDFT
operators:

I, = NyF,7'-DFT(I) - N,F, ' =1 -F,- M, -F,~ ",
and in the same way:
I,=F, "M, -F,-1.

In the following we will use the degradation operators
D, and D, defined as:

D, =F, - M, 'F:c—ly

Dy=F,~'- M, F,



4. Regularized reconstruction

In order to satisfy on the one hand, a good signal to noise
ratio as well as edge preservation, and on the other hand, a
good adequation to the data contained in both input images,
we propose to minimize an energy functional taking into
account each of these constraints. This approach has been
studied in many papers {3, 2].

4.1. The energy functional

The energy functional has the following form:
J=Q+X-®

where A allows a trade-off between @, the regularization
term, and @, the fidelity to the data. Both terms are de-
scribed below.

Fidelity to the data:

The matter is to minimize the sum of the quadratic errors
between the reconstructed image and the data:

Q=WIrec Do~ L ||* + | Dy - Lyee — I, ||?

where D, and D, are the operators of resolution degrada-
tion as in Section 3, || . || represents the £ norm, I, is the
high resolution image at current iteration, I and I are the
low resolution input images.

Regularization term:
It takes the following form:

N. Ny

=3 ) W((rec - Ao)iy) + Y((Ay - Lrec)ss))

=1 j=1

where 1) is a potential function, and A, and A, are the
operators of neighbor differences along directions z and y.

We choose to use the Huber potential function [2] (Fig-
ure 2) which, when applied to the first order neighbor differ-
ences, smoothes the areas with small local differences while
preserving discontinuities at the sites with higher local dif-
ferences:

{ Y(z)
P(z)

The influence of parameter a was studied in [6]; intu-
itively, when a is small, edges are better preserved, while

when « is greater, edges are smoothed as with the quadratic
function.
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Figure 2. The Huber potential function.

Convexity:

We proved in [7] that the energy functional is convex but
not strictly, so there may be several solutions minimizing
the functional, forming a connected set.

4.2. Optimization method

We choose a deterministic method well-suited for mini-
mizing convex energies: the well-known conjugate gradient
method. Since our functional is not strictly convex, great at-
tention should be paid to the initialization: for example we
can choose the average between both acquisitions.

5. Experimental results

We show here the results obtained for two sample slices
of one of the several patient volumes we processed (due to
lack of place the MIPs (Maximum Intensity Projections)
cannot be shown here). From the sagittal and the axial
volumes we compute the corresponding frontal volumes
(shown for our two sample slices in Figures 3 and 5), with
a resolution of 4 mm in ¢ and 0.98 mm in y for the sagittal
volume and with a resolution of 0.98 mm in z and 4 mm
in y for the axial volume. Then we reconstruct a unique
high resolution volume; Figures 4 and 6 show the results
corresponding to Figures 3 and 5.

Figure 3. A couple of anisotropic frontal slices
of the aorta, computed from the sagittal vol-
ume (left) and from the axial volume (right).

These results were visually evaluated by an expert, who
judged the final regularized result better than the low reso-
lution acquisitions and than the non-regularized results.



Figure 4. Results obtained from the slices of
Figure 3. left: )\ ~ 0;right: A =2 and o = 0.005.

Figure 5. A couple of anisotropic frontal slices
of the aorta, computed from the sagittal vol-
ume (left) and from the axial volume (right).

Figure 6. Results obtained from the slices of
Figure 5. left: A\ ~ 0; right: A =2and a =0.005.

Moreover, the method was quantitatively evaluated on a
physical vessel phantom of high resolution with known di-
mensions, from which the degraded acquisitions were simu-
lated. The method proved to be robust against noisy data, as
well as against small changes of parameters « and A; edges
were quantitatively compared to original edges and proved
to be well-preserved.

6. Conclusion and future work

We have presented a reconstruction method taking into
account both fidelity to the acquired data, and an edge pre-
serving regularization criterion. This method is based on an

349

original acquisition process composed of two anisotropic
volumes. It allows to reduce the acquisition time in MRI
without degrading the spatial resolution. Convexity of the
criterion makes the conjugate gradient algorithm convenient
for minimization; moreover, the methods proved to be ro-
bust against the parameters as well as against noisy data
(see [7]). Medical experts judged the method to give at least
as good results as a unique high resolution acquisition.

We consider several tracks for future work: first of all,
a judicious choice of the regularization parameter allows
to obtain either a visually good result (reasonable regular-
ization), or an easily segmentable result (high regulariza-
tion), this last case being of high interest for our long-term
goal: quantization of vessel dimensions. We also consider
to extend the regularization to the third dimension (the con-
stant resolution dimension) in order to improve robustness
against noisy data; finally, we may also extend the acqui-
sition process to three acquisitions, i.e. by adding a third
anisotropic acquisition with low resolution along the third
dimension.
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