SEGMENTATION BY DEFORMABLE CONTOURS OF MRI SEQUENCES OF
THE LEFT VENTRICLE FOR QUANTITATIVE ANALYSIS

D Richens*, N Rougon*, | Bloch*, E Mousseaux™*

*Télécom Paris, France; ** Hdpital Broussais, France

1 INTRODUCTION

Certain Magnetic Resonance Imaging (MRI) techniques,
such as gradient-echo, allow for rapid acquisition speeds
suitable for acquiring motion picture studies of the heart
over a whole cardiac cycle. This gives cardiologists an-
other tool for detecting and assessing pathologies of the
heart. For the most part cardiologists are more interes-
ted in the performance of the left ventricle (LV), as it is
a powerful blood pump for the systemic circulation. As
an imaging modality, MRI systematically provides excellent
blood/tissue/air contrast regardless of the subject’s condi-
tion, while remaining completely non-invasive. Unlike car-
diac angiography, perhaps the currently favored technique
for quantitative cardiac analysis, the epicardium is rendered
as well as the endocardium. Echocardiography, though al-
lowing to visualize both of these structures, produces noisy
images and is highly sensitive to variation between patients,
especially because of frequently occuring air pockets which
obscure important features.

However, manual measurement of MRI data is time
consuming and provides results that are essentially non-
reproducible. This is especially true for volume measure-
ments that require a cardiologist to delineate the contour
of the body to be measured. As it is apparent that quan-
titative measurements from 3-D medical imagery can be
very useful, much work has been done in order to reduce
or eliminate the need for human involvement in the mea-
suring process. In particular Fleagle et al. [2] use a graph
technique for finding the epicardium and endocardium from
MRI images, and Lilly et al. [4] use knowledge-based cost
functions to extract borders from cineangiographic images
segmented by thresholding the image gradients.

In this article, we present an application of a deformable
contour model to extract the epicardial and endocardial
boundaries of the LV from a time sequence of cardiac MR
Images. The deformable model that we use is based on
the work of Rougon and Préteux [6]. In order to exploit
both the geometric and photometric information present
in temporal image sequences, an additional coupling force
between the contours located in adjacent images is intro-
duced. Automatic and robust initialization procedures for
the iterative optimization of the model are investigated in
order to reduce interactivity. The segmentation results are
then used to calculate the evolution of the LV volume during
the cardiac cycle. From these measurements, it is possible
to compute precisely clinical parameters such as peak filling
rate or ejection fraction. This method provides therefore a
first step towards an automatic quantitative characteriza-
tion of heart function.

2 IMAGE SEGMENTATION BY
ACTIVE CONTOURS

In this section, we discuss the process used in going
from raw data to the computation of our quantitative
parameters. The raw image data come from two centers:
1) a 15T Signa (General Electric) with an echo delay TE =
17 ms, a repetition time TR = 31 ms, a flip angle = 30° and
a slice thickness of 10 mm, 2) a 1.5T Gyroscan (Philips)
with a TE = 13 ms, TR = 25 ms, flip angle = 45° and
a slice thickness of 8 mm. For both machines, the image
matrix consists of 128 lines of 256 pixels, reconstructed as
a matrix of 256 lines of 256 pixels. Acquisitions were gated
on the R wave of the ECG and averaged over two mea-
surements per slice. Therefore, the number of frames per
cardiac cycle depends on the heart rate and on the number
of TR times that could be fitted into the RR interval. This
results in anywhere from 19 to 27 images per cardiac cycle,
depending on the subject’s heart rate. The field of view
provides a spatial resolution from 1.44 mm to 1.56 mm per
pixel.

2.1 Active contours for segmentation

The segmentation is achieved using an active contour model
called g-snake [6] which extends the classical snake model
[3, 1]. This method was chosen since it has been shown to
work efficiently on images where noise renders useless edge
detection relying on discrete differential operators.

Briefly, the segmentation is performed by iteratively de-
forming an initial approximation C° of the contour to
be determined. In g-snake modelling, contours are des-
cribed as closed almost-everywhere CZ-continuous curves
which behave as expanding/contracting inhomogeneous
membrane/thin-plates. Therefore, the contour delineates a
controlable area while resisting to stretching and bending.
These mechanical properties are specified by an internal
energy expressed by :

Bine(C) = / (X ds+ [ BRI ds
——‘/1/cdct(]z,x,)ds , (1)

where X (s) = (2(s),y(s))T denotes the set of points that
make up the deformable curve C parameterized by an arc-
length s, X, = %’;?- and X,, = ?:T’,z. The first two integral
terms in (1) refer to the snake model [3], and respective-
ly approximate the stretching and bending energy of our
membrane/thin-plate model. The term S(s) is usually held
constant for all points on C, thereby controlling the curva-
ture and limiting the amount of bending. However, we let



the a(s) term be determined separately for each point on
C by the local curvature of the contour. This is done in or-
der to avoid problems at points with high curvature where
too much stretching of the contour can cause a discontinui-
ty. Other adaptivity schemes for material properties can be
found in [8]. The third integral term in (1) is an isotropic
pressure potential which controls the evolution of the area
A(C) = —21- J: det(X,X,,)ds of the region limited by C. The
term « € IR determines whether the area is encouraged to
increase or decrease, depending on its sign and the orien-
tation of C°, by pushing or pulling on the contour in the
direction normal to the curve.

This contour is deformed to the image contour by apply-
ing an external energy potential derived from image data
and expressed by:

Em(C,I):—A/; IVI(X)[ds (2)

where [|[VI(X)|| denotes the magnitude of the image gra-
dient, and X > 0 is a weighting coefficient. Gradients were
evaluated using a recursive implementation of the Diffe-
rence of Gaussian operator. The standard deviation of the
gaussian filter is set to half a pixel, as MRI images generally
don’t suffer from that much additive noise of the “salt and
pepper” type.

The segmentation is found by iteratively minimizing the
total energy of the system defined as the sum of E;,. and
Ecz:. A complete description of the discrete model and the
deformation process can be found in [6].

2.2 Coupled active contours 7]

We now present a modification to the g-snake model which
aims to explicitely exploit the sequential nature of our ima-
ge sets. For instance, images taken from the diastasis stage
of ventricular filling can often provide a weaker signal from
the inside of the ventricle due to the lower blood flow, hence
making the endocardial border less prominent. If the im-
age just before and the image just after have a reasonable
strong signal, however, we can use the positions of the ac-
tive contours of these two images to guide the contour of
the weak image.

In this case, we need to consider our set of images as
mappings on a Euclidean 3-space £, when the 3*¢ dimen-
sion is temporal. More precisely, given a sequence of N
images, let (IL;);cu..n) C & denote a set of Euclidean
planes defined, respectively, by equations z = z,z; € R,
so that II; is the support space for image 1. In each image
1, we can then define an active contour C; as a set of points
X(s)= (2(3),9(s), 2(s) = z:) of II; together with internal
and external energy functionals Ef,, and EX_,, respective-
ly. The expression for the total energy of all of the active
contours is given by:

N N N N
Bt =) Bty B2y > B, (3)
i=1 i=1 i=1 j=if1

where E:p, is the energy resulting from the addition of a
coupling force between the contours, defined as:

V(i,j) c [1..]\"]2 ,
1
B = / PRSI ST G
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394

otherwise E:I;’, equals zero. When 7 — j = 1 we are cou-
pling an image contour with those of its two immediate
neighbours. Since our image sequences are looped, we are
also coupling the contours of the first (i = 1) and the last
images (j = N). The non-negative parameter p determines
the extent of the coupling force with respect to all the other
forces acting on the contours.

Extending the deformation process given in [6] is relative-
ly straightforward and is performed by defining the coupling
force as an additional external force.

Ideally, the iterative process is said to have converged
when none of the points along the contour move between
two successive iterations. However, this requires substantial
computation, hence in practice, we considered the process
to have converged when |E{Y) — E(V < e, where
e > 0 is experimentaly determined.

2.8 Initialization by morphological methods

Our MRI images contain two continuous edges of interest:
the epicardial border and the endocardial border. Determi-
ning which of these two borders is found by our deformation
process depends somewhat on our selection of the parame-
ters describing the deformable contours and the deforma-
tion process. Moreover, in order to improve the robustness
of the method while reducing intra- and inter-observer vari-
ability, an automatic determination of the initial contour C°
is necessary. We perform this initialization step by means
of mathematical morphology techniques.

As blood generates the strongest signal in gradient-echo
images, the LV appears in the original images as a bright
disc of non-uniform intensity. Therefore, an approximate
localization of the LV can be obtained by extracting regional
maxima in a filtered version of the original images. The
filtering step consists in an opening with a dodecagonal
structuring element whose radius is roughly the radius of
the interior of the LV. In each image, the initial contour
for the endocardial border is positioned on the boundary of
the selected maximum. Dilating the initial contour for the
endocardium at diastole provides a suitable initialization for
finding the epicardial border throughout the cardiac cycle
for our set of sequences.

3 QUANTITATIVE STUDY OF
THE LEFT VENTRICLE

Volume measurements from temporal sequences of images
can be very valuable as they allow for the calculation of pa-
rameters of clinical interest such as the Peak Filling Rate
(PFR), the Time to Peak Filling Rate (TPFR), and the
Ejection Fraction (EF), the definitions of which are given
below. These measurements can be calculated either glo-
bally for the entire LV, or regionally by dividing the LV into
radial sectors and performing the calculations separately for
each sector. Given a slice, real volumes are accurately com-
puted by multiplying the voxel size (pixel size x slice thick-
ness) by the number of pixels in the region delineated by the
contours obtained previously, including boundary points.

The EF parameter provides an usual estimation of the
LV function. It is computed by the following equation as
percentage of end diastolic volume:

Vea = Ve
Vea

EF = x100% (5)



where V.4 and V., are the end diastolic and end systolic vo-
lumes, respectively. Dividing the difference by the volume at
diastole normalizes the value between patients. The PFR,
expressed in milliliters per second, measures the maximum
blood flow during the Rapid Filling Phase (RFP) of dias-
tole. It is taken from volume curve as the maximum positive
slope. To account for variations in heart rate, the slope is
normalized by dividing the value by the cardiac frequency,
and, as with the EF, the value is normalized with respect
to end diastolic volume. This gives us a unitless parameter
which indicates the PFR of the heart in end diastolic vo-
lumes per duration of the cardiac cycle. The TPFR is the
measure of the time from the end of systole to the time of
PFR. This measurement indicates the duration of the RFP.
Like the PFR, the TPFR should be normalized with respect
to the cardiac frequency, so as to indicate the fraction of
the entire cardiac cycle occupied by the RFP.

Computing the PFR and TPFR requires the determina-
tion of the maximum positive slope point of the volume
curve. Data sparseness together with potential outliers a-
long this curve make direct differentiation using first order
differences quite unreliable. For instance, for a ventricular
radius of ten pixels (typically end systole), a half-a-pixel
accuracy on the actual radius leads to a ten percent un-
certainty on the volume. An analytical representation of
the discrete curve allows, however, to obtain more stable
estimates. A satisfactory solution consists in using Discrete
Fourier Transform (DFT). Retaining only the first four har-
monics in the DFT expansion before performing the inverse
transform allows to filter out noisy data. Figure 2 shows
the result of the volume fit.

The way in which we divide up the LV for regional mea-
surement is designed to focus on the performance of dif-
ferent sectors of the myocardium. The interior of the LV
is divided into radial sectors where measurements are per-
formed individually. The center of such a partition must be
a relatively stable point with respect to the heart. Using
the centroid of the endocardial border would defeat the pur-
pose of doing the regional measurements. For instance, in
the case of a myocardial infarction, the endocardial border
next to the dead muscle tissue would move very little dur-
ing the cardiac cycle. Therefore, the centroid would always
be halfway between that point and the endocardial bor-
der opposite, leading to nearly identical measurement sets.
Hence the centroid of the epicardium must be used. To
illustrate this, we have calculated the EF, PFR and TPFR
for each radial segment using both the epicardial and the
endocardial centroids. Table 1 shows the means and stan-
dard deviations for each of these parameters over the six
segments.

endo-centered epi-centered
EF% PFR TPFR | EF% PFR TPFR
" 71 3.63 151 78 4.14 .101
a 2.5 456 .0247 20 .963 .0645

Table 1: Means (1) and standard deviation (o) of regional
measurements taken from the ‘exercise’ sequence, using the
centroid of the endocardium and then the epicardium as
the center of the heart. Note the difference in & for the EF
parameter.
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4 RESULTS AND DISCUSSION

Our results are presented in the form of volume curves, and
as both global and regional clinical parameters (EF, PFR,
TPFR), within a specific slice of the heart. These para-
meters are intended to indicate the relative performance of
the subject’s heart and to detect global abnormalities of the
LV function in homogeneous diseases, such as hypertension
or primitve cardiomyopathies. Furthermore, a segmental
analysis could detect regional abnormalities which occur in
ischemic disease or asymmetric LV hypertrophy.

We have applied this method to the segmentation of
three sets of sequences acquired on three patients at dif-
ferent heart levels and under different cardiac activity con-
ditions. The first data set consists of temporal sequences
taken on a patient at rest through the base, the middle and
the apex of the LV, respectively. The second set was ac-
quired at the mid-ventricle level before and after an exercise
period. Finally, robustness with respect to noise was tested
on a degraded sequence acquired at mid-ventricle level on
a patient at rest. Table 2 summarizes the results obtained
for the EF, PFR and TPFR.

image set | EF PFR/EDV__ PFR. TPFR.
base 25 1.03 0.86 .183
mid 59 1.90 1.61 203
apex 67 3.22 2.68 194
rested 59 2.86 2.29 .154
exercise 70 5.31 3.75 146
noisy 35 1.49 1.08 149

Table 2: Parameters calculated from six image sequences.
PFRn and TPFR,, are normalized as described in the text,
PFR/EDV is normalized with respect to End Diastolic Vol-
ume (EDV) only, as described in [5].

Figure 2 shows the results of a comparison between the
volume measurements made by our method of the ‘base’,
‘mid’ and ‘apex’ sequences, with the volume measurements
performed by a cardiologist from manually delineated con-
tours. The slope of the line of best fit is less than one,
indicating that the manually derived volumes are general-
ly greater than those derived from the computer generated
borders. Manually derived volumes were less for smaller
volumes, as shown by the line’s intersect of the y-axis. The
correlation between the two sets of volumes is R = 0.995.
Therefore, the discrepancy between the manually and com-
puter derived volumes seems to be systematic. We believe
that several causes may help to explain this bias. First, visu-
al effects due to contrast sensitivity of the human eye induce
significant changes in the way of positioning the contours.
Therefore, the dynamics corrections which the cardiologist
intuitively performs when visualizing the images and the low
dynamics around gradient maxima must be taken into ac-
count. Secondly, because of heart movements, acquisition
levels cannot be kept constant with respect to an anatomi-
cal coordinate system, so that LV papillary muscle may in-
tersect the slice for some images in the sequence. This
spurious effect, which frequently occurs for mid-ventricle
slices, is smoothed out by the cardiologist but cannot be
handled by our method without including extra anatomical
knowledge. Finally, the a and « parameters should perhaps
be altered to allow the contour to expand more. The ECG
provides then biologically consistent information to control
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Figure 1: Contours of the regional maxima of the morphologically filtered image (left). We assume that the contour found
around the center point of the image is the C°. Final endocardial and epicardial contours (right).
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Figure 2: Left: The result of fitting the volume data with fourier series. Line tangent to the curve indicates the maximum
slope of the function, used to calculate the PFR. Right: Comparison of volumes calculated from computer derived endocardial
borders with those calculated from manually traced borders. Correlation between the two sets of measurements is R = 0.995.



