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Abstract

We propose in this paper an original definition for fuzzy
attributed graph homomorphism that deals with both the
structural aspect and the maximization of similarity be-
tween attributes (on nodes and on arcs). A graph fuzzy ho-
momorphism theory is developed to gather different pieces
of information extracted from images, and to take full ad-
vantage of the whole graph structure, with several attached
attributes. The homomorphism properties allow relevant
and accurate graph mapping by evaiuating graph struc-
ture deformation with fuzzy sets. Anticipated application
is atlas-based labeling of brain MRI using graph homomor-
phism for spatial and temporal analysis of brain tumors and
surrounding structures. The definition: and properties pro-
posed in this paper are a first step towards this goal.

1. Introduction

Graph modeling is being used in structural pattern recog-
nition for several vears. The graph structure can easily
model adjacency between objects in a scene (classical 2D
images, or 2D image sequences, or 3D images, or 3D image
sequences). In this case, each vertex represents an individ-
ual object and an arc represents a binary relation (adjacency
is but one example of such relations) between two objccts.
Recent works ({6, 12] for example) used a graph structure
to model relations and attached attributes on both vertices
and arcs to quantify the objects and the relations. These at-
tributes are extracted from the image and are supposed to be
relevant for recognition purposes. Classical work is then to
look for similarities between an unknown graph and scveral
model graphs. Well known examples are problems of char-
acter recognition (e.g. in [9], Chinese character are mod-
cled with fuzzy attributed graphs) or face recognition (e.g.
[13]). A graph structure can also model rclations between

0-7803-5276-9/99/810.00 © 1999 IEEE 1801

object classes. For example, in [8], relationships between
classes extracted on an image with a fuzzy c-means [11]
are modeled. Often, the problem is to find between several
models which one fits the case that is analyzed. The prob-
lem involved is known as graph isomorphism: a one-to-one
mapping is searched. This problem is NP-hard.

In complex scene recognition, there is hardly a unique
and exact solution. Previous processing on the scene can
infer segmentation problems that imply imprecision and un-
certainty. Morcover, another type of problems is not to
find the model among a set of models that best fits the im-
age but to find a more precise mapping between each re-
gion of the image (vertices in the graph) and labels of one
generic model. Our example is the recognition of patholog-
ical structures in brain Magnetic Resonance Images (MRI).
A “normal brain” is manually segmented by radiologists
and is used as an atlas for recognition. This constitutes the
generic model. Another image is automatically segmented.
Two graphs are built: one from the atlas, and another from
the image to process. If we want at least all the boundaries
of the anatomical brain structures, the algorithm has to pro-
duce over-segmentation. The use of bijective graph match-
ing (isomorphism) is therefore inadequate, and several-to-
one or one-to-several mappings of objects must be investi-
gated. Unfortunately, the literature on the subject does not
contain a unified and generic definition of such graph ho-
momorphism.

The contribution of this paper is the proposal of an orig-
inal and generic definition of a fuzzy graph homomorphism
(also called morphism) that processes both vertices and
arcs. We also introduce measuring tools for fuzzy attributed
graphs. The proposed definition is then applied to a con-
crete brain structure recognition problem in medical imag-
ing, which is another original aspect of our contribution.

After preliminary notations exposed in Section 2, this pa-

per briefly explains the use of fuzzy attributed graphs (Sec-
tion 3). The definition of a tuzzy graph homomorphism is



presented in Section 4. Measuring tools for fuzzy attributed
graphs are explained in Section 5. Finally a discussion on
a first application (Section 6) and a conclusion (Section 7)
are given.

2. Notations

We need two graph structures to define the morphism:
G; = (N;, E;), where N; is a vertex set, £; C N; X Nj is
an arc set, and ¢ € {1, 2} refers to the graphs.

Let X beasetand p: X — [0, 1] a fuzzy set on X. The
application p is called the membership function to the set
X. The support of p is the subset of X: supp(p) = {z €
X/p(z) > 0}.

For all sets X, we denote by F(X) the set of all the fuzzy
subsets on X . Specifically, p € F(X).

3. Fuzzy attributed graphs

We need first to define fuzzy attributed graphs (FAG) and
their use in structural pattern recognition. Previous similar
definitions can be found in [6, 8, 9]. Let Z = {z;}i=1, .1
be the vertex attribute set. Values for each attribute z; is
taken in the set R; = {r;j};=1,.. ;- A fuzzy set is in-
troduced on these values: VR,. € F(R;). Finally, the set
L, = {(, ffR;)}z’:l,..,,I stands for the vertex attributes
and fuzzy set pairs. We define similar sets for the arcs. Let
Y = {yi}i=1,... 1 be the arc attribute set. Values for each
attribute y; is taken in the set 7; = {t;;};=1,.. - A fuzzy
set is introduced on these values: Az, € F(T;) . Finally,
the set Ly = {ATl}izl,... .+ stands for the arc attributes
and fuzzy set pairs. ~ o

A fuzzy attributed graph on L = (L,, Ls) with an un-
derlying graph structure G; = (N;, F;) is the ordered pair
(V, A) where V = (N, &) is called the fuzzy attribute ver-
tex setand A = (E, ji) the fuzzy attribute arc set.

&:N—)zv
i E— Ly,

is the fuzzy vertex interpreter

is the fuzzy arc interpreter

This definition can also handle other graph types such
as simple graphs, some weighted graphs, fuzzy graphs, at-
tributed graphs. The simple graph is just the structure of the
FAG: Z = Y = (). The weighted graph can be handled with
Z =l and Y holds one attribute: the normalized weight (if
no weight is infinite). The fuzzy graph [10] is handled with
Z and Y holding one attribute: the membership function
of the vertex, or the arc to the graph. The attributed graph
is the crisp version of the FAG, where all the membership
functions take their values in {0, 1} instead of [0, 1]. We aim
to work on FAG because of its generic property, and also
because of the richness of this formalism in pattern recog-
nition problems, particularly in the image domain.
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4. Fuzzy homomorphism

The definition of the graph homomorphism is defined on
a simple graph structure, and is extended to fuzzy attributed
graphs with the introduction of several tools.

A fuzzy homomorphism between the graph G; and the
graph (5 is the pair of membership functions (p,, p,) de-
fined on the vertices and on the arcs:

Po = {pou1 . N2 e [0»1]: Uy € Nl}
Pu = {Pu(ul’vl) P By = {0,1], (u1,v1) € Ev}

such that ¥(uy,v1) € En,

21 (g, v9) > 0= p, 1 (ug) > 0 and p, "t (v3) > 0
M

V(u1,v1) € By : supp(ps®') # 0 and supp(p."') # 0
= (ug, v2) € supp(ps*') X supp(ps"*)
such that (ug, vg) € supp(pu(“l'“)). )

The aim of this definition is to work on both the vertices
and the arcs as a whole structure, whereas other definitions
work only on vertices and consider the arcs as a help to
match two graphs. Thus, the two properties (1) and (2) are
given to keep graph structures. That is why there are re-
lationships between vertex and arc membership functions.
The property (1) is introduced to guarantee that an arc has
two vertices at its extremities: this constraint is the basic
property of a graph. Here, this constraint is expressed in
terms of degrees. Alone, this property allows the correspon-
dence by the morphism between two vertices linked with an
arc to others two without arc. To explain the introduction of
Equation 2, let’s first consider the reciprocal property that
we call the bijective condition (Equation (3)).

Y(u1,v1) € E1, pu ™) (ug,v2) > 0
& pe (uz) > Oet po"*(v2) >0 (3)

This condition is too strong for a generic problem. If
two vertices have the same vertex image by the morphism,
then the arc between them must have a loop on this vertex.
In Figure 1, the vertex u and the vertex v are linked to the
vertex w with a non zero degree (symbolized with a dashed
line). If the condition (3) is verified, the arc (u, v) must be
linked to the loop (w, w). Loops are very often meaningless
in pattern recognition problems modeled by graphs. Thus,
this condition cannot be kept for a generic definition,

Because the condition (1) could alone imply trivial mor-
phisms that only match vertices, another original property
has been introduced. This property, formalized by Equation
(2), is a weak reciprocal condition to (1). If two vertices
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Figure 1. Loop problem with the too strong
bijective condition (3).

linked with an arc have several vertex images by the mor-
phism, then there must exist at least one arc between the
vertex images that is the image of the first arc. This con-
dition is illustrated in Figure 2. We have p,*(z) # 0 with
© € {a,b,c}. We have p,¥(y) # 0 withy € {d,¢, f,g}.
These properties are symbolized with dashed lines between
the vertices. Then, there exists at least one arc between one
vertex in {a, b, c} and another in {d, e, f, ¢} that is linked
to (u,v): p, ) (b, £)) # 0. This raorphism satisfies both
conditions (1) and (2).

Figure 2. The weak reciprocal condition (2)
guarantee that the support of the membership
function of an arc is not empty.

This condition allow the potential conservation of the
graph structure. The problem of Figure 1 is solved on Fig-
ure 3: other nodes {w,z,y, 2} can be matched to u and
v. Only one arc between one node of (w, z) and one node
of {w,y, z} (that is not the arc (w, w)) is sufficient. Two
arcs arc present on Figure 3 to show two possibilities in this
case. On the one hand, the arc (z, z) is a normal arc that can
show that the morphism on both node u and v to the node
w was not significant. On the other hand, the arc (w,y)
show that the morphism of both node « and v to the node w
can be significant, but that a graph structure can however be
kept with the arc (w,y). The final step of defuzzification,
that is the decision step, will be able to choose to match this
arc, or not. Keeping the arc can be really helpful during the
algorithmic research of the morphism.

It is easy to show that the condition (3) implies the con-
ditions (1) and (2) but that the reciprocal is false. This for-
malism allows both several-to-one and one-to-several ap-
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Figure 3. Loop problem solved by the weak
reciprocal condition (2).

plications, and conservation of the graph structure. On the
one hand, this property induces more complicated treatment
when optimizing the morphism, but on the other hand it can
handle segmentation problems such as under-segmentation
and over-segmentation that are classical drawbacks of im-
age segmentation,

5. Similarity measures

Similarity measures defined in our framework are based
upon the work of Rifgi et al [5] who proposed a whole the-
ory on comparison measures of fuzzy objects. The mea-
sures are extended to fuzzy attributed graphs with several
attributes. The reader should refer to this article for further
explanation of the theory. An attribute is a set of different
fuzzy sets. Each arc and each vertex have several attributes.
In order to compare two vertices (or two arcs) with the same
set of attributes, we have to define aggregation operators.

Let o3(u) be the fuzzy vertex attribute interpretor for
attribute #, on the vertex u. We also define ﬂj(u, v), the
fuzzy arc attribute interpretor for attribute j, on the arc
(u,v). We will only define the measures for the vertices:
the measures on the arcs are defined similarly. A vertex
u has the following indexed vector of fuzzy set attributes:
(G1(u), &2(u), ..., &r(uw)), with I the number of attributes.

A M-measure M on a vertex u is defined by the func-
tion:

Mz N = [0,1)f
ur M (u)
with

M (u) = (M1(61(u)), Ma(G2(w)), ..., M1(1(u)))

with M, being a simple mcasure on a single fuzzy set
{monotonous function, with M (#) = 0). The first property
is that M is also monotonous with respect to the inclusion

(the proof is immediate). For two vertices u and v, we note:
M (u) X M5 (v).



A M;-measure of similitude between two fuzzy set
A and B is a mapping in [0, 1] such that M;(A, B) =
Gum,(AN B,A — B,B — A), and that is non-decreasing
in AN B and non-increasing in A — B and B — A. Justifi-
cations can be found in [5].
_ Let S'g be an M;-measure of similitude on a fuzzy set
VR, (5% is thoroughly defined in [5], but the complete def-
inition is not necessary to understand the concept presented
here). The application defined by:

S&ZN1XN2—-)[O,1]

(’LLI,U2) — T(S},(B’l(ul),&l(uﬂ), P ,Sg(&;(ul),&f(zu))),

with 7 a fusion operator chosen for example from [1], like
a t-norm or a t-conorm. We can prove that S; is there-
fore an M-measure of similitude. We have defined a global
measure that can be applied on vertices, and that has the
same global properties [5] than the individual single fuzzy
set measure of similitude. All these definitions can be ap-
plied to the arc attribute sets to build Sz, an M-measure of
similitude.

6. First application and discussion

The aim of the homomorphism definition is to be
generic. Applications are indeed numerous, and we will
only present our first application of it in brain medical
imaging. Brain anatomical structures are visible on Mag-
netic Resonance Images. This medium is also widely used
by radiologist to visualize brain tumors, after injection of
gadolinium (a contrast product). Segmentation and pattern
recognition issues are important for such images. The tumor
itself must be segmented and recognized in order to measure
its properties such as volume or radiometry. These charac-
teristics can be measures through time with periodic regular
acquisition, to control their evolution. Those problems are
important and already studied although no real satisfactory
solutions were found yet. Another issue not studied yet is
the segmentation of the anatomical structures surrounding
the tumor, and that are distorted, necrosed, or simply no
longer exist. The aim of such a study is to measure the ef-
fect of a therapy on both the tumor and the brain structures.
Therapy are mainly of three types: chimiotherapy, radio-
therapy or surgical intervention. There are two examples of
MR images in Figure 4. Figure 4-a represents an axial slice
of a 3D normal brain. and Figure 4-b represents an axial
slice (approximately corresponding to 4-a ) of a 3D brain
with a tumor (white hyper-signal).

To achieve this, we aim at developing a robust atlas-
guided labeling of over-segmented images using fuzzy at-
tributed graphs. We first use an anatomical atlas: a “nor-
mal” brain MRI is manually segmented by a radiologist.
This segmentation is used afterwards as an atlas. A fuzzy
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Figure 4. MR image examples: (a) is an axial
slice of a normal brain, (b) is an axial slice of
a pathological brain with a tumor.

attributed graph is then built on this atlas. We compute an
automatic segmentation on a pathological brain MRI, after a
preliminary segmentation of the tumor itself (we only want
surrounding structures to be recognized). If we want at least
all the anatomical structures boundaries, the chosen algo-
rithm produces over-segmentation that must be handled in
our algorithm. We build fuzzy attributed graph on this im-
age. The over-segmentation forbid the use of isomorphism
between the two graphs. The theory presented in section
4 is the only known definition of graph morphism that can
handle other mappings than one-to-one. That is why we
developed and used it.

The chosen attributes depend upon the way we are build-
ing both graphs. Because spatial relations are scarcely vari-
able in brain MRI, the graph structure was build upon an
adjacency graph: one vertex corresponds to one region, and
one arc to the adjacency of two regions. Thus, a first natu-
ral fuzzy attribute for the arcs were a fuzzy adjacency: this
measure is used because it is directly linked with the con-
struction of the graph. We also introduced a fuzzy distance
that can overcome short range influence of adjacency (we
refer to [3, 4] for further explanations of fuzzy adjacency
and fuzzy distance). We also choose an attribute about
fuzzy relative position [2] because adjacency and distances
do not express 3D directional spatial relations. The vertex
attributes are somewhat more difficult because of the vari-
ability of the shape, absolute position and grey levels of the
brain structures. Therefore, we can foresee that the vertex
attributes should not have an important weight in the algo-
rithm that will find the morphism. The only attribute tested
was the membership degree to the three substance classes
of the brain: grey matter, white matter and cerebro-spinal
fluid. This attribute is processed from the grey levels and



a-priori knowledge of the statistical properties of them.

We have adapted a fuzzy relaxation algorithm proposed
originally by Rosenfeld [11] and modified by Chipman et al.
[7] to overcome the problems of contagious low weights.
This algorithm was not proposed for graph matching, but
the formalization was very close. Our first adaptation uses
only the morphism p,, on the vertex, and consider the mor-
phism p, on the arcs only as a fuzzy compatibility between
the labeling of two pairs of nodes. The algorithm initializes
pe (after arigid matching of the two MRI volumes) by com-
paring the center of gravity of each region (i.e. vertex) to the
center of gravity of each region of the atlas. This operation
is possible because both volumes have the same orientarion
and scaling. The algorithm maximizes the following crite-
rion:

>

WL,U1,U2,U2

5;1((“17 U1)7 (U27 Uz))ﬁa (u1, “2),00 (UL, ?)2)7
“4)

with up € JVl, vy €& Ni, g € No, v9 € Nj. In this cri-
terion, Sz ((uy,v1), (2, vo)) is in fact a compatibility coef-
ficient computed once for each pair ((u1, v1), (12, v2)) and
kept constant during the algorithm.

First results have been obtained, and are very promising.
One typical result is shown in Figure 5. All the images are
3D, and this figure represents two slices (axial and sagittal)
of the same 3D image. Figures 5-a and 5-b are the atlas
labels represented as grey levels (one grey level equals one
anatomical structure, and there are 50 s:ructures). Figures
5-¢ and 5-d show an example of an over-segmentation of
a MR image that we want to analyze. There are 400 re-
gions in this 3D segmentation. Finally, Figures 5-e and 5-f
are the results of labeling (by our algorithm) superimposed
on the original MR images. We can see that the two main
regions recognized as the caudate nucleus fit well the dark
grey structure. The result of the morphism is in fact several
fuzzy sets that have to be interpreted. Those first results
were obtained by selecting the first regions that best fit a
given structure. Only the number of selected regions is cho-
sen in a supervised way in our current implementation,

The results are promising, although not yet thoroughly
studied. The fact thar there is no gold standard to compare
our result with is a serious difficulty to the evaluation of the
results. One way is to compare manual segmentation and
recognition of the structure. This method, which takes a
long time, is not yet considered because all the features of
our new graph morphism are not exploited. The next issue
is to match both vertices and arcs, and not only vertices.
We have to create a new relaxation algorithm, based upon
the one used for this test.

The first tests were on normal brains. Tests on patholog-
ical ones are planned, and are supposed to show the robust-
ness of the method with respect to more important deforma-

tions, because of the use of relative spatial attributes in the
graph. These results will be available soon.

7. Conclusion

We have presented a new generic definition of graph
fuzzy homomorphism that should include all previous def-
initions as particular cases. Minimal properties have been
proposed and discussed in order to keep graph structure
through the morphism. Several properties of this defini-

Figure 5. Example of segmentation and
recognition result: (a) and (b) are two atlas
slices, (c) and (d) are two slices of an over-
segmentation example of a normal brain, (e)
and (f) are two results of a recoghized struc-
ture (caudate nucleus) superimposed on the
original MR image.
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tion are not explored yet (composition, reciprocal morphism
... ). A methodology to build fuzzy measures on fuzzy at-
tributed graphs is also proposed, and aims at defining tools
to measure the accuracy of the matching. Both theories have
been applied to the problem of brain MR image segmenta-
tion and recognition for anatomical structures. First results
are promising. A complete evaluation is the scope of future
work. The problem of graph morphism finding was not ex-
plored in this paper, and will soon be the subject of further
work.
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