Representation of structural information in images using fuzzy set theory
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Abstract—In this paper, we show how fuzzy set theory can
be used to represent structural information in images, in
particular, relationships between imprecise objects, defined
as spatial fuzzy sets. We distinguish two types of relation-
ships: on the one hand, relationships that are well defined
in the case of crisp objects (like adjacency or distance), and
on the other hand, relationships that do not find any con-
sensual definition even in the binary case (typically relative
position between objects). We propose several ways to gen-
eralize relationships of the first class in order to incorporate
imprecision attached to the objects. For the second class, we
argue that fuzzy definitions are appropriate even when deal-
ing with crisp objects, and we propose original definitions.

Keywords— Fuzzy sets, image processing under impreci-
sion, structural information, fuzzy spatial relationships.

I. INTRODUCTION

The use of fuzzy sets in image processing has gained an
increasing interest (see e.g. [11], [2]). Their power to deal
with imprecise image information relies on:

o the ability of fuzzy sets to represent spatial informa-
tion in images along with its imprecision, at different
levels and under different forms (numerical as well as
symbolic),

+ the recent generalization of operations to fuzzy sets in
order to manage spatial information,

¢ and information fusion using fuzzy combination oper-
ators, and leading to decision making.

We consider here fuzzy objects, i.e. fuzzy sets defined di-
rectly in the image space S, through their membership
function u. For each image point z € 8, u() is a value in
[0, 1] representing the membership of x to the fuzzy object
defined by .

The main information contained in the images consists
of properties of the objects and of relationships between
objects, both being used for pattern recognition and scene
interpretation purposes. Relationships between objects are
particularly important since they carry structural informa-
tion about the scene, by specifying the spatial arrange-
ments between objects.

In this paper, we show how fuzzy set theory can be used
to represent structural information in images, in the form
of relationships between imprecisely defined objects, that
are represented as spatial fuzzy sets.

We distinguish in Section II two types of relationships
for representing structural information, the first one corre-
sponding to relations that are well defined in the crisp case,
and the second one to relations that are vague even in the
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crisp case. Then we show in Section III how to extend
relationships of the first type to fuzzy objects, and illus-
trate this construction on two examples: adjacency and
distances. In Section IV, we show that fuzzy concepts are
powerful for defining relationships of the second type, even
on crisp objects. The example of relative position is a good
illustration. In Section V we illustrate these relationships
on fuzzy objects obtained from 3D MR, brain images.

II. STRUCTURAL INFORMATION AS TWO TYPES OF
SPATIAL RELATIONSHIPS

Model-based or case-based pattern recognition often re-
lies on similarity measures, designed for comparing shapes
and objects according to several aspects or features. Spa-
tial information constitutes an important part of these fea-
tures in image processing and scene interpretation, and it
1s either related to each object itself, or related to rela-
tionships between objects. We assume that the objects
of interest have been segmented in a previous step. This
segmentation may be coarse, and this may have several
COnsequences:

+ Boundaries between objects can be imprecisely de-
fined, leading to handling fuzzy objects instead of crisp
ones. Therefore, the measures that will be defined in
this paper need to apply for both crisp and fuzzy ob-
jects.

+ The objects may be only partially detected, which lim-
its drastically measures based only on size and shape
of the objects. This limit is even more severe for ob-
jects having similar shapes.

In such cases, individual recognition of each object is al-
most impossible, or would be unreliable. Therefore, the
features used in the recognition process have to make use
of the structural information, i.e. the spatial arrangement
of the objects in the scene. Indeed, spatial relationships
may allow to recognize objects with reference to other ones,
even if individual properties of the objects are not reliable.

We distinguish two kinds of spatial relationships. Some
of them are well defined if the objects are crisp, like adja-
cency, inclusion or other set relationships. But since they
are highly sensitive to errors or imprecision in segmenta-
tion, more useful measures can be obtained by fuzzifying
these concepts.

Other relationships are inherently vague concepts, like
relative position, surroundness, betweenness, etc. Fuzzy
definitions of such relationships are then more consistent
than crisp ones.
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In both cases, fuzzy sets appear as an appropriate tool
for providing consistent definitions that fit the intuition
and have good properties.

III. EXTENDING WELL DEFINED CRISP RELATIONSHIPS
TO FUZZY SETS

In this Section, we propose fuzzy definitions generalizing
well defined crisp spatial relationships. Such crisp concepts
have a limited interest in case of imprecise segmentation,
since they are very sensitive to tiny changes in object de-
lineation. For instance, relationships like adjacency or in-
clusion may be satisfied between two objects, and no more
satisfied if only ‘a few points are missing or added in one
of the objects. This can be avoided by dealing with fuzzy
objects, taking explicitly into account imprecision in seg-
mentation, and by generalizing classical definitions to such
objects.

A. General principle

In this Section, we consider the general problem of ex-
tending a relationship Rp between two binary objects to its
fuzzy equivalent R (fuzzy relationship between two fuzzy
objects).

One way to define crisp sets from a fuzzy set consists
in taking the a-cuts of this set. Therefore a first class of
methods relies on the application of the relationship Rp to
each a-cut. This gives rise to two different “fuzzification”
methods in the literature.

The first one consists in “stacking” the results obtained
with binary operations on the a-cuts: let us denote by
p and v the membership functions of two fuzzy objects
defined on the considered space and taking values in [0,1],
the fuzzy equivalent R of Rp is then defined as (see e.g.

(51, [7], [12]):
(1)

or similarly by a double integration. Other fuzzification
equations are also possible. Examples of this approach
concern for instance connectivity [14], fuzzy mathematical
morphology [5], distances [7], [1], [4], etc.

The second method is derived from the extension princi-
ple [17], which leads in the general case to a fuzzy number
(rather than a crisp number):

1
R, v) = /0 R (fro, ve)di,

Vn € V(Rg), R(p,v)(n) = sup a,

Rp(pa,va)=n

(2)

where V(Rp) denotes the image of Rp, i.e. the set of val-
ues taken by Rp. If the relationship to be extended only
takes binary values (0/1, or true/false), then this expres-
sion reduces to a number.

A second class of methods consists in translating binary
equations into their fuzzy equivalent: intersection is re-
placed by a t-norm, union by a t-conorm, sets by mem-
bership functions, etc. Examples can be found for defining
fuzzy morphology (5], fuzzy inclusion [16], etc.

These two classes of methods may lead to the same def-
initions for particular choices of the fuzzy operators.

B. Using fuzzy mathematical morphology

The extension method using formal translation of equa-
tions is particularly straightforward if the binary relation-
ship can be expressed in set theoretical and logical terms.
This is actually the case for set relationships and for sev-
eral others, like adjacency. Moreover, this remark endows
methods based on mathematical morphology with a par-
ticular interest, since mathematical morphology is mainly
based on set theory. Therefore all relationships that can
be expressed in terms of morphological operators (Haus-
dorff distance for instance) will be easily extended to fuzzy
objects.

In the following, we define fuzzy relationships by extend-
ing the corresponding crisp ones using formal translation
of set theoretical and morphological expressions.

C. Adjacency between fuzzy sets

Adjacency is an example of spatial relationship that is
well defined in the crisp case and that carries a strong in-
formation about the structure of the image or the scene.

In the crisp discrete case, two image regions X and Y
are adjacent if:

XNY =0 and Iz X,y €Y :n.(z,y), 3
where n.(z,y) is the Boolean variable stating that z and
y are neighbors in the sense of the discrete c-connectivity.
A consequence of this definition is that, if X and Y are
adjacent, then any ¢ € X and y € Y that satisfy n.(z,y)
belong to the boundary of X and Y respectively. Definition
3 can also be expressed equivalently in terms of morpho-
logical dilation, as: X NY =0 and D(X,B.)NY #
0, D(Y,B.)NX # 0, where D(X, B.) denotes the dila-
tion of X by the elementary structuring element B, cor-
responding to the c-connectivity.

The extension of this definition can therefore be per-
formed in three different ways, as detailed in [6]. This ex-
tension involves the definitions of a degree of intersection
Hint(pt, V) between two fuzzy sets p and v defined on S, as
well as a degree of non-intersection u—; (g, v), and a de-
gree of neighborhood n,, between two points z and y of S.
This leads to the following definition for fuzzy adjacency
between p and v:

Hadi (B, v) = Hpaine (1, v),sup sup tu(z), v(y), neyll.  (4)
TES YES v

Adding the constraint on boundary leads to the following
definition:

Badi (1, V) = t{p—ine (i, v), sup sup b, (z), b, (y), nuyl], (5)
reS YyeS

where b, denotes the fuzzy boundary of p (see [6] for de-
tails).

Finally, the degree.of adjacency between u and v involv-
ing fuzzy dilation is defined as:

Hadi (/i, V) = t[/"—‘int(/% V): Nint[D(/*"» Bc)a 1/], Nmt[D(V, Bc%égi]])
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where D(p, B.) denotes the fuzzy dilation of y by the struc-
turing element B, [5]. This definition represents a conjunc-
tive combination of a degree of non-intersection between p
and v and a degree of intersection between one fuzzy set
and the dilation of the other. B, can be taken as the ele-
mentary structuring element related to the considered con-
nectivity, or as a fuzzy structuring element, representing
for instance spatial imprecision (i.e. the possibility distri-
bution of the location of each point).

All these definitions have the desirable properties: they
are symmetrical, consistent with the binary definition if p,
v and B, are binary, and decreases if the distance between
4 and v increases. There are also invariant with respect to
geometrical transformations.

D. Distances between fuzzy sets

Distance between fuzzy sets is an example where several
mathematical definitions exist in the binary case. Here
we show that the construction principle based on transla-
tion of formal expressions can be applied easily as soon as
the distance can be expressed in set theoretical and logical
terms. It is the case for distances having a direct expression
in terms of mathematical morphology (e.g. nearest point
distance, Hausdorff distance, or distance from a point to
a set). Therefore we defined in [1] the fuzzy equivalent of
these distances in terms of fuzzy mathematical morphology.

We consider here the examples of nearest point distance
(denoted by dx) and Hausdorfl distance (denoted by dg)
since they have a direct morphological expression that will
be used in the following:

dv(X,Y) = inf{n, X ND(Y) # 0}
inf{n,Y N D" (X) # 0}. (N

dg(X,Y) =inf{n, X C D*(Y) and Y C D*(X)}. (8)

In these equations, X and Y denote two crisp sets of the
considered space S, and D™(X) the dilation of size n of X.
Note that for the nearest point distance, separability and
triangular inequality are not satisfied, while the Hausdorff
distance is a true distance.

A direct morphological expression of the fuzzy exten-
sion of nearest point distance is obtained by translating
equation 7. We define a distance distribution Ap (g, p')(n)
that expresses the degree to which the distance between
two fuzzy sets p and g is less than n by:

An(p, ') (n) = f[iggt[ﬂ(w),l?ﬁ(u')(w)],

sup t[' (), D (1) ()], (9)
where ¢ is a t-norm, f is a symmetrical function, and D}
denotes the fuzzy dilation of size n by the fuzzy structur-
ing element v. A distance density, 1.e. a fuzzy number
On (12, ') (n) representing the degree to which the distance
between p and p’ is equal to n can be obtained implicitly
by [15]:

Al i)m) = [ Ot (10

Clearly, this expression is not very tractable and does not
lead to a simple explicit expression of dn (¢, #')(n). There-
fore, we suggest to use an explicit method, exploiting the
fact that, for n > 0, we have:

dy(X,Y)=neo D"(X)NY #0and D" HX)NY =0
(11)

and the symmetrical expression. For n = 0 we have:
dn(X,)Y)=0 XNY #40. (12)
The translation of these equivalences provides, for n > 0:

o (1, 1) (n) = i[ilégt[/t'(r% D2 () ()],

elsuptfu'(a), D~ (1) @)l

(13)
or a symmetrical expression derived from this one, and:

o (i, 1)(0) = sup tfu(z), ' (2))- (14)
z€S
From equation 8, a distance distribution for Hausdorff
distance can be defined, by introducing fuzzy dilation:

Ap(u, p)(n) = t[inf T(D} () (2), e’ (@))],
inf T[Dp(4)(=), c(p(=))]], (15)

where ¢ is a complementation, ¢ a t-norm and 7' the dual
t-conorm. Like for the nearest point distance, a distance
density can be derived implicitly from this distance distri-
bution. A direct definition of a distance density can be
obtained from:

dr(X,Y)=0& X =Y, (16)
and for n > 0:
dg(X,)YY=ne X CD*(Y)and Y C D"(X)
and (X ¢ D" Y(Y)or Y ¢ D"1(X)). (17)

Translating these equations leads to a definition of the
Hausdorff distance between two fuzzy sets yu and y’ as a
fuzzy number:

3u (1, 1)(0) = tlinf Tlu(z), (' (2))], inf T{w' (=), (@),
(18)
8 (, 1) (n) = {1 TIDY () (), e(p' ()],

inf TDP (') (@), e(u(=))],

T(:lelgt[u(w), D (u) ()], i\égt[ﬂ’(m): DY (w) (=)
(19)

The previous definitions of fuzzy nearest point and Haus-
dorff distances (defined as fuzzy numbers) between two
fuzzy sets do not necessarily share the same properties as
their crisp equivalent. This is due in particular to the fact
that, depending on the choice of the involved t-norms and t-
conorms, excluded middle and non contradiction laws may
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not be satisfied. All distances are positive, in the sense
that the defined fuzzy numbers have always a support in-
cluded in the positive half real line. By construction, all
defined distances are symmetrical with respect to p and 4’
The separability property is not always satisfied. However,
if ;4 is normalized, we have for the nearest point distance
Sn(p, 1) (0) = 1 and dn{p, p)(n) = 0 for n > 1. For the
Hausdorff distance, dg(p, #')(0) = 1 implies pp = g for T
being the bounded sum (7'(a,b) = min(1,a + b)), while it
implies ¢ and g’ crisp and equal for 7' = max. Also the
triangular inequality is not satisfied in general.

IV. Fuzzy DEFINITION FOR INTUITIVE BUT
MATHEMATICALLY VAGUE RELATIONSHIPS:
RELATIVE POSITION

In this Section, we consider relative position, as a good
example for the second type of relationships. Indeed, re-
lationships like “left to” are rather ambiguous concepts.
They defy precise definitions, but human beings have a
rather intuitive and common way of understanding and in-
terpreting them, and they are of prime importance for un-
derstanding the structure of a scene. From our every day
experience, it is clear that any “all-or-nothing” definition
leads to unsatisfactory results in several situations, even
of moderate complexity. Therefore, relative position con-
cepts may find a better understanding in the framework of
fuzzy sets, as fuzzy relationships. Several definitions have
been proposed in the literature, most of them relying on
histograms of angles between objects [12], [13], [10]. Here,
we present an original definition based on a morphological
approach, and dealing with crisp as well as fuzzy objects,
and that works in 2D as well as 3D.

Let us consider a reference object R and an object A
for which the relative position with respect to R has to be
evaluated. In order to evaluate the degree to which A is in
some direction with respect to R, we propose the following
approach:

1. We first define a fuzzy “landscape” around the refer-
ence object R as a fuzzy set such that the membership
value of each point corresponds to the degree of satis-
faction of the spatial relation under examination. The
fuzzy landscape is directly defined in the same space
as the considered objects.

2. We then compare the object A to the fuzzy landscape
attached to R, in order to evaluate how well the ob-
ject matches with the areas having high membership
values (i.e. areas that are in the desired direction).
This is done using a fuzzy pattern matching approach,
which provides an evaluation as an interval instead
of one number only. This makes a major difference
with respect to all the previous approaches, and, to
our opinion, it provides a richer information about the
considered relationship.

In the 3D Euclidean space, a direction is defined by
two angles a; and oo, where a; € [0,27] and a2 €
[——%, %] (a2 = 0 in the 2D case). The direction in
which the relative position of an object with respect

to another one is evaluated is denoted by: Ua, e, =

(cos g cos ar1, cos g sin ¢y, sin ag)t, and we note a =
(a1, @9).

We consider two (possibly fuzzy) objects, R and A, and
define the degree to which A4 is in direction @a, ., with
respect to R. Let us denote by pq(R) the fuzzy set defined
in the image in such a way that points of areas which satisfy
to a high degree the relation “to be in the direction iy, oy
with respect to reference object R” have high membership
values. In other terms, the membership function pe(R) has
to be an increasing function of the degree of satisfaction of
the relation. It is a spatial fuzzy set (i.e. a function of the
image S into [0,1]) and directly related to the shape of R.
The precise definition of p4(R) is given later.

Let us denote by us the membership function of the ob-
ject A, which is a function of § into [0,1]. The evaluation of
relative position of A with respect to R is given by a func-
tion of po(R)(z) and pg(xz) for all z € S. An appropriate
tool for defining this function is the fuzzy pattern match-
ing approach [9]. Following this approach, the evaluation
of the matching between two possibility distributions con-
sists of two numbers, a necessity degree N (a pessimistic
evaluation) and a possibility degree IT (an optimistic eval-
uation), as often used in the fuzzy set community. In our
application, they take the following forms:

Hgl,az (A) = i‘égt[ﬂa(R)(w)y HA (‘7})]’

NE 0,(4) = inf Tlaa(R)(@),1 - pa(@)],  (20)
where t is a t-norm (fuzzy intersection) and T a t-conorm
(fuzzy union) [8]. In the crisp case, these equations re-
duce to: IT§ , (A) = sup,c 4 pa(R)(2), and NT. , (4) =
infoea pra(R)(z).

The possibility corresponds to a degree of intersection
between the fuzzy sets A and po(R), while the necessity
corresponds to a degree of inclusion of A in pq(R). They
can also be interpreted in terms of fuzzy mathematical mor-
phology, since the possibility Hgl,m (A) 1s equal to the dila-
tion of 4 by po(R) at origin, while the necessity Nolz,a;, (A)
is equal to the erosion, as shown in [5]. These two interpre-
tations, in terms of set theoretic operations and in terms of
morphological ones, explain how the shape of the objects
is taken into account.

Several other functions combining g, (R) and pa(z) can
be constructed. The extreme values provided by the fuzzy
pattern matching are interesting because of their morpho-
logical interpretation, and because they provide an interval
and not only a single value and may represent in this way
the ambiguity of the relation if any. An average measure
can also be useful from a practical point of view, and is
defined as:

1
M(ﬁ,ag(A) = I—AT Z#A(x)PG(R)(x): (21)
€S
where |A| denotes the fuzzy cardinality of A: |A] =

Yocs male):
The key point in the previous definition relies in the defi-
nition of yq (R). The requirements for this fuzzy set are not
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strong and leave room for a large spectrum of possibilities.
This flexibility allows the user to define any membership
function according to the application at hand and the con-
text requirements. We propose here a definition that looks
precisely at the domains of space that are visible from a
reference object point in the direction #,,q,. This applies
to any kind of objects, in particular having strong concavi-
ties. Let us denote by P any point of §, and by @ any point
of R. Let (P, Q) be the angle between the vector QTP and
the direction iy, ,q,, computed in [0, 7]. We then determine
for each point P the point @ of R leading to the smallest
angle G, denoted by Bmin. In the crisp case, this point @
is the reference object point from which P is visible in the
direction the closest to @a,,az: Bmin(P) = minger B(P, Q).
The fuzzy landscape pq(R) at point P is then defined as:
pa(R)(P) = f(Bmin(P)), where f is a decreasing function
of [0, 7] into [0,1]. In our experiments, we have chosen a
simple linear function: p,(R)(P) = max(0,1— —ng;r"ﬂ)
In the fuzzy case, we propose a method which only com-
bines membership values, one describing the membership
to R, and the other to the fuzzy landscape. This corre-
sponds to translating binary equations and propositions
into fuzzy ones: in the binary case, we express that: Q € R
and f(Bmin) = maxger f(B(P,Q)) (since f is decreasing),

which translates in fuzzy terms as:

ta(R)(P) = o max Hur(Q), F(B(P, Q))],

22
pp(S) (22)

where ¢ is a t-norm.

An advantage of this approach is its interpretation in
terms of morphological operations. It can be shown that
Lo (R) is exactly the fuzzy dilation of pp by v, where v is
a fuzzy structuring element defined on S as:

% arccos M], (23)

0P|

where O is the center of the structuring element. This
equivalence provides an additional morphological interpre-
tation of our definition. The reader may refer to [3] for
more details on these definitions and their properties.

VP € 8, v(P) =max[0,1-

V. APPLICATION IN BRAIN IMAGING

In this Section, we illustrate the method on a fuzzy ex-
ample taken from medical imaging, which shows more prac-
tical properties of the proposed approach. In a magnetic
resonance (MR) image of the human brain we have seg-
mented several internal structures using a fuzzy segmenta-
tion method. Five fuzzy structures are shown in Figure 1
(with the standard “left-is-right” convention of medical im-
ages): left ventricle (v1), right ventricle (v2), left caudate
nucleus (ncl), right caudate nucleus (v2) and left thala-
mus (t1). These structures may be recognized using an
anatomical atlas for instance, by comparing relationships
between atlas structures and relationships between image
structures.

The adjacency degrees between some of the obtained
fuzzy objects are given in Table I. The results are in agree-
ment with what can be expected from the model (crisp
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Fig. 1. Top: 5 fuzzy objects resulting from a rough fuzzy segmen-
tation of a MR brain image (membership values rank between
0 and 1, from white to black). Bottom: superposition of these
fuzzy objects and labels as observed in the original MR image.

adjacency between atlas objects). In this case, crisp ad-
jacency would provide completely different results in the
model and in the image, preventing its use for recognition.
This suggests that fuzzy adjacency degree can indeed be
used for pattern recognition purposes, of course combined
with other spatial relationships.

Fuzzy object 1 | Fuzzy object 2 | degree of adjacency in
adjacency | the model (crisp)
vl v2 0.368 1
vl ncl 0.463 1
vl t1 0.000 [0}
vl nc2 0.035 0
v2 nc2 0.427 1
ncl t1 0.035 0
TABLE I

RESULTS OBTAINED FOR FUZZY ADJACENCY. LLABELS OF STRUCTURES
ARE GIVEN IN FIGURE 1. HIGH DEGREES ARE OBTAINED BETWEEN
STRUCTURES WHERE ADJACENCY IS EXPECTED, WHILE VERY LOW

DEGREES ARE OBTAINED IN THE OPPOSITE CASE.

Examples of distances between brain structures are
shown in Table II, as fuzzy numbers issued from the mor-
phological definitions. The results are in agreement with
what is expected: v2is near from nc2 and v1, quite far from
ncl and very far from t1. We do not obtain a null value for
v2, since it does not perfectly match the model of v2, but
we obtain values that are still much lower than those ob-
tained for the other structures. This shows that distances
can be used both for identifying a structure among several
possible ones, by using distance as a dissimilarity measure,
and for describing the spatial arrangement of objects in
terms of nearness or farness.

The fuzzy landscapes representing the degree of satis-
faction of the relations “left to”, “right to”, “ below” and
“above” object vl are shown in Figure 2. They are ob-
tained using Equation 22 using the product t-norm. The
relative position degrees between some of the obtained
fuzzy objects are given in Figure 3, for the t-norm min
in the fuzzy pattern matching. The interpretation of these
results is straightforward with respect to the intuitive ex-
pected relative positions. Object ncl is mainly to the right



[ Distance between v2 and:
| object | 5y (min) [ 5y (min)
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TABLE II
DISTANCES BETWEEN FUZZY SETS USING THE MORPHOLOGICAL
APPROACH, FOR THE NEAREST POINT DISTANCE AND THE HAUSDORFF
DISTANCE, USING MINIMUM AS T-NORM. THE DISTANCE IS COMPUTED
BETWEEN EACH OF THE 5 STRUCTURES AND A MODEL OF V2.

of v1 (and only with very low degree to its left), and quite
above and below. This expresses that it is “in the right
concavity of v1” an example of more complex relationship
derived from the basic relative positions. Object nc2 is to
the left of v1, with no ambiguity at all concerning the right
relationship (i.e. no point of nc2 is to the right of v1). It
is quite above v1, and less'below it than ncl. Similar in-
terpretations can be given for t1 and v2 with respect to
vl.

VI. CoNCLUSION

‘We have shown is this paper the power of fuzzy set the-
ory for describing structural information in images in the
form of spatial relationships between imprecise image ob-
jects. Further work aims at integrating these relationships
in a structural model-based pattern recognition system, for

Fig. 2. Fuzzy areas corresponding to four relationships of Figure 3
for the object v1 of Figure 1.
net wel vi

ne2 war. vi o wet vl

k right  below above left right  below  above left right  below  above
Fig. 3. Results of relative position obtained for some of the objects

of Figure 1.

spatial reasoning under imprecision.
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