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PREFACE

This book contains a first-year graduate course in which the basic techniques and
theorems of analysis are presented in such a way that the intimate connections
between its various branches are strongly emphasized. The traditionally separate
subjects of “real analysis” and “complex analysis” are thus united; some of the
basic ideas from functional analysis are also included.

Here are some examples of the way in which these connections are demon-
strated and exploited. The Riesz representation theorem and the Hahn-Banach
theorem allow one to “ guess” the Poisson integral formula. They team up in the
proof of Runge’s theorem. They combine with Blaschke’s theorem on the zeros of
bounded holomorphic functions to give a proof of the Miintz-Szasz theorem,
which concerns approximation on an interval. The fact that I? is a Hilbert space
is used in the proof of the Radon-Nikodym theorem, which leads to the theorem
about differentiation of indefinite integrals, which in turn yields the existence of
radial limits of bounded harmonic functions. The theorems of Plancherel and
Cauchy combined give a theorem of Paley and Wiener which, in turn, is used in
the Denjoy-Carleman theorem about infinitely differentiable functions on the real
line. The maximum modulus theorem gives information about linear transform-
ations on IP-spaces.

Since most of the results presented here are quite classical (the novelty lies in
the arrangement, and some of the proofs are new), I have not attempted to docu-
ment the source of every item. References are gathered at the end, in Notes and
Comments. They are not always to the original sources, but more often to more
recent works where further references can be found. In no case does the absence
of a reference imply any claim to originality on my part.

The prerequisite for this book is a good course in advanced calculus
(settheoretic manipulations, metric spaces, uniform continuity, and uniform
convergence). The first seven chapters of my earlier book “ Principles of Mathe-
matical Analysis” furnish sufficient preparation.

xiii



XiV PREFACE

Experience with the first edition shows that first-year graduate students can
study the first 15 chapters in two semesters, plus some topics from 1 or 2 of the
remaining 5. These latter are quite independent of each other. The first 15 should
be taken up in the order in which they are presented, except for Chapter 9, which
can be postponed.

The most important difference between this third edition and the previous
ones is the entirely new chapter on differentiation. The basic facts about differen-
tiation are now derived from the existence of Lebesgue points, which in turn is an
easy consequence of the so-called “weak type” inequality that is satisfied by the
maximal functions of measures on euclidean spaces. This approach yields strong
theorems with minimal effort. Even more important is that it familiarizes stu-
dents with maximal functions, since these have become increasingly useful in
several areas of analysis.

One of these is the study of the boundary behavior of Poisson integrals. A
related one concerns HP-spaces. Accordingly, large parts of Chapters 11 and 17
were rewritten and, I hope, simplified in the process.

I have also made several smaller changes in order to improve certain details:
For example, parts of Chapter 4 have been simplified; the notions of equi-
continuity and weak convergence are presented in more detail; the boundary
behavior of conformal maps is studied by means of Lindelof’s theorem about
asymptotic valued of bounded holomorphic functions in a disc.

Over the last 20 years, numerous students and colleagues have offered com-
ments and criticisms concerning the content of this book. I sincerely appreciated
all of these, and have tried to follow some of them. As regards the present edition,
my thanks go to Richard Rochberg for some useful last-minute suggestions, and 1
especially thank Robert Burckel for the meticulous care with which he examined
the entire manuscript.

W alter Rudin



PROLOGUE
THE EXPONENTIAL FUNCTION

This is the most important function in mathematics. It is defined, for every com-
plex number z, by the formula

Q0

exp (z2) = ), -rzz_': (1)

n=0

The series (1) converges absolutely. for every z and converges uniformly on every
bounded subset of the complex plane. Thus exp is a continuous function. The
absolute convergence of (1) shows that the computation

n! bk — i (a + b)"

Om! n on! k=0 k!(n_k)! n=0 n!

is correct. It gives the important addition formula
exp (a) exp (b) = exp (a + b), (2)

valid for all complex numbers a and b.
We define the number e to be exp (1), and shall usually replace exp (z) by the
customary shorter expression e®. Note that e® = exp (0) = 1, by (1).

Theorem

(a) For every complex z we have e* # 0.
(b) exp is its own derivative: exp’ (z) = exp (2).
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(c) The restriction of exp to the real axis is a monotonically increasing positive
function, and

e*— o0 as x— 00, ec—>0as x— —oo.

(d) There exists a positive number n such that e™'*> = i and such that &* = 1 if
and only if z/(27i) is an integer.

(e) exp is a periodic function, with period 2i.

(f) The mapping t — e" maps the real axis onto the unit circle.

(9) If wis a complex number and w # 0, then w = e* for some z.

PROOF By (2), ¢* - e 2 = ¢~ 2 = ¢° = 1. This implies (a). Next,

exp (z + h) —exp (2)

exp’ (z) = lim = exp (z) lim exp (h) — 1

= exp (2).
h—0 h h—0 h

The first of the above equalities is a matter of definition, the second follows
from (2), and the third from (1), and (b) is proved.

That exp is monotonically increasing on the positive real axis, and that
e*— o0 as x— o0, 1s clear from (1). The other assertions of (c) are conse-
quences of &* - e™* = 1.

For any real number ¢, (1) shows that e™" is the complex conjugate of e".
Thus

Ieulz — elt . elt — elt . e"lt — elt—u — eO —_ 1,

or
le| =1 (t real). (3)

In other words, if ¢ is real, e lies on the unit circle. We define cos t, sin ¢t to
be the real and imaginary parts of e":

cos t = Re [¢"], sint = Im ["] (t real). (4)
If we differentiate both sides of Euler’s identity
e =cos t + i sin t, (5)
which is equivalent to (4), and if we apply (b), we obtain
cos't+isin't=ie"= —sint +icost,
so that
cos’ = —sin, sin’ = €os. (6)
The power series (1) yields the representation

/N S o
cost=1—2—!+4—!—a+~-. (7)
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Take t = 2. The terms of the series (7) then decrease in absolute value (except
for the first one) and their signs alternate. Hence cos 2 is less than the sum of
the first three terms of (7), with t = 2; thus cos 2 < —4. Since cos 0 = 1 and
cos is a continuous real function on the real axis, we conclude that there i1s a
smallest positive number t, for which cos t, = 0. We define

It follows from (3) and (5) that sin t, = + 1. Since
sin (t) =cost>0

on the segment (0, t,) and since sin 0 = 0, we have sin t, > 0, hence sin t, =
1, and therefore

e™? =i 9)

It follows that e™ = i> = —1, e*™ =(—1)> =1, and then e*™" =1 for
every integer n. Also, (e) follows immediately:

ez+2ni — ezeZm' = e (10)

If z= x + iy, x and y real, then ¢ = e*e”; hence | *| = e*. If * = 1, we there-
fore must have e* = 1, so that x = 0; to prove that y/27 must be an integer, it
is enough to show that e¢” # 1if 0 < y < 2=, by (10).

Suppose 0 < y < 2w, and

eV* =y +iv  (uand v real) (11)
Since 0 < y/4 < n/2, we have u > 0 and v > 0. Also
e” = (u + iv)* = u* — 6u*v? + v* + 4iww(u? — v?). (12)

The right side of (12) is real only if u® = v?; since u®> + v? = 1, this happens
only when u? = v2 = 1, and then (12) shows that

eV = —1#1

This completes the proof of (d).

We already know that t— e maps the real axis into the unit circle. To
prove (f), fix w so that |w| = 1; we shall show that w = " for some real ¢.
Write w = u + iv, u and v real, and suppose first that u > 0 and v > 0. Since
u < 1, the definition of © shows that there exists a ¢, 0 < t < ©/2, such that
cos t = u; then sin? t =1 — u? = v2, and since sint >0 if 0 <t < n/2, we
have sin t = v. Thus w = €".

If u <0 and v > 0, the preceding conditions are satisfied by —iw. Hence
—iw = " for some real t, and w = ¢**™?), Finally, if v < 0, the preceding
two cases show that —w = ¢ for some real t, hence w = ¢**™. This com-
pletes the proof of (f).

If w#0, put « =w/|w|. Then w=|w|a. By (c), there is a real x such
that |w| = e*. Since |a| =1, (f) shows that a = ¢'” for some real y. Hence
w = e**?, This proves (g) and completes the theorem. //]/
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We shall encounter the integral of (1 + x2)~! over the real line. To evaluate
it, put @(t) = sin t/cos t in (—n/2, n/2). By (6), ¢’ = 1 + ¢*. Hence ¢ is a mono-

tonically increasing mapping of (— /2, ©/2) onto (— o0, 00), and we obtain

J‘oo dx J‘R/Z (p'(t) dt J‘n/Z dt
— = = Tt.
o L+ X2 [ 14 0%)  J-gp




CHAPTER

ONE
ABSTRACT INTEGRATION

Toward the end of the nineteenth century it became clear to many mathemati-
cians that the Riemann integral (about which one learns in calculus courses)
should be replaced by some other type of integral, more general and more flex-
ible, better suited for dealing with limit processes. Among the attempts made in
this direction, the most notable ones were due to Jordan, Borel, W. H. Young,
and Lebesgue. It was Lebesgue’s construction which turned out to be the most
successful.

In brief outline, here is the main idea: The Riemann integral of a function f
over an interval [a, b] can be approximated by sums of the form

3. f(em(E)

where E,, ..., E, are disjoint intervals whose union is [a, b], m(E;) denotes the
length of E;, and t; € E; for i =1, ..., n. Lebesgue discovered that a completely
satisfactory theory of integration results if the sets E; in the above sum are
allowed to belong to a larger class of subsets of the line, the so-called
“measurable sets,” and if the class of functions under consideration is enlarged to
what he called “measurable functions.” The crucial set-theoretic properties
involved are the following: The union and the intersection of any countable
family of measurable sets are measurable; so is the complement of every measur-
able set; and, most important, the notion of -“length” (now called “measure”
can be extended to them in such a way that

m(Ey O Ey U Ey U ++) = m(Ey) + m(Es) + m(Eg) + -
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for every countable collection {E;} of pairwise disjoint measurable sets. This pro-
perty of m is called countable additivity.

The passage from Riemann’s theory of integration to that of Lebesque is a
process of completion (in a sense which will appear more precisely later). It is of
the same fundamental importance in analysis as is the construction of the real
number system from the rationals.

The above-mentioned measure m is of course intimately related to the
geometry of the real line. In this chapter we shall present an abstract (axiomatic)
version of the Lebesgue integral, relative to any countably additive measure on
any set. (The precise definitions follow.) This abstract theory is not in any way
more difficult than the special case of the real line; it shows that a large part of
integration theory is independent of any geometry (or topology) of the underlying
space; and, of course, it gives us a tool of much wider applicability. The existence
of a large class of measures, among them that of Lebesgue, will be established in
Chap. 2.

Set-Theoretic Notations and Terminology

1.1 Some sets can be described by listing their members. Thus {x,, ..., x,} is the
set whose members are x,, ..., x,; and {x} is the set whose only member is x.
More often, sets are described by properties. We write

{x: P}

for the set of all elements x which have the property P. The symbol ¢ denotes
the empty set. The words collection, family, and class will be used synonymously
with set.

We write x € A4 if x is a member of the set 4 ; otherwise x ¢ A. If B is a subset
of A, ie, if x € B implies x € 4, we write¢ Bc A. If Bc A and A = B, then
A=B.If Bc Aand A # B, Bis a proper subset of A. Note that (J = A for every
set A.

A U B and A n B are the union and intersection of A and B, respectively. If
{A,} is a collection of sets, where a runs through some index set I, we write

)4, and ()4,

aecl aecl

for the union and intersection of {4,}:

|) 4, = {x: x € A, for at least one « € I}

ael

(YA, = {x: x € A, for every a € I}.

ael

If I is the set of all positive integers, the customary notations are

U4, and [)A4,.
n=1 n=1
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If no two members of {4,} have an element in common, then {4,} is a
disjoint collection of sets.

We write A — B= {x: x € A, x ¢ B}, and denote the complement of A by A°
whenever it is clear from the context with respect to which larger set the com-
plement is taken.

The cartesian product A, x --- x A, of the sets A,, ..., A, is the set of all
ordered n-tuples (a,, ..., a,) where a; € A;fori=1,..., n.

The real line (or real number system) is R!, and

R*=R!" x --- x R! (k factors).

The extended real number system is R' with two symbols, co and — oo, adjoined,
and with the obvious ordering. If —o0 < a < b < o0, the interval [a, b] and the
segment (a, b) are defined to be

[a, b] = {x: a < x < b}, (a, b) = {x:a < x < b}.
We also write
[a,b)={x:a<x<b}, (a b]={x:a<x<b}.

If Ec[—o0, 0] and E # (&, the least upper bound (supremum) and great-
est lower bound (infimum) of E exist in [ — 00, c0] and are denoted by sup E and
inf E.

Sometimes (but only when sup E € E) we write max E for sup E.

The symbol

i X->Y

means that f is a function (or mapping or transformation) of the set X into the set
Y; i.e, f assigns to each x € X an element f(x) e Y. If A =« X and Bc Y, the
image of A and the inverse image (or pre-image) of B are

f(A) = {y: y =f(x) for some x € A},
f71(B) = {x:f(x) € B}.

Note that f ~!(B) may be empty even when B # .

The domain of fis X. The range of fis f (X).

Iff(X)=Y,fissaid tomap X onto Y.

We write f ~(y), instead of f ~!({y}), for every y € Y. If f ~!(y) consists of at
most one point, for each y € Y, f is said to be one-to-one. If f is one-to-one, then
f ~1is a function with domain f(X) and range X.

If f: X—>[—o0, 0] and E < X, it is customary to write sup, . f(x) rather
than sup f(E).

If f: X— Y and g: Y — Z, the composite function g - f: X — Z is defined by
the formula

(g Nx)=9g(f(x))  (x€ X).
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If the range of f lies in the real line (or in the complex plane), then fis said to
be a real function (or a complex function). For a complex function f, the statement
“f > 0” means that all values f(x) of f are nonnegative real numbers.

The Concept of Measurability

The class of measurable functions plays a fundamental role in integration theory.
It has some basic properties in common with another most important class of
functions, namely, the continuous ones. It is helpful to keep these similarities in
mind. Our presentation is therefore organized in such a way that the analogies
between the concepts topological space, open set, and continuous function, on the
one hand, and measurable space, measurable set, and measurable function, on the
other, are strongly emphasized. It seems that the relations between these concepts
emerge most clearly when the setting is quite abstract, and this (rather than a
desire for mere generality) motivates our approach to the subject.

1.2 Definition

(@) A collection 7 of subsets of a set X is said to be a topology in X if t has
the following three properties:

(i) Jerand X € 7.
@) If V,etfori=1,...,.nthen V. "V, n---nV,er.
(iii) If {V,} is an arbitrary collection of members of 7 (finite, countable, or
uncountable), then | J, V, € 7.

(b) If 7 is a topology in X, then X is called a topological space, and the
members of 7 are called the open sets in X.

(c) If X and Y are topological spaces and if fis a mapping of X into Y, then
f is said to be continuous provided that f ~!(V) is an open set in X for
every openset Vin Y.

1.3 Definition

(@) A collection M of subsets of a set X is said to be a g-algebra in X if IN
has the following properties:

(1) X € 9.
(i1) If A € I, then A° € M, where A is the complement of A relative to
X.
(iii) f 4=/, 4A,andif 4, e Mforn=1,2,3,...,then 4 € M.

(b) If M is a o-algebra in X, then X is called a measurable space, and the
members of M are called the measurable sets in X. ‘

(c) If X is a measurable space, Y is a topological space, and f is a mapping
of X into Y, then f is said to be measurable provided that f ~!(V) is a
measurable set in X for every open set V in Y.
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It would perhaps be more satisfactory to apply the term “measurable space”
to the ordered pair (X, M), rather than to X. After all, X is a set, and X has not
been changed in any way by the fact that we now also have a g-algebra of its
subsets in mind. Similarly, a topological space is an ordered pair (X, 7). But if this
sort of thing were systematically done in all mathematics, the terminology would
become awfully cumbersome. We shall discuss this again at somewhat greater
length in Sec. 1.21.

1.4 Comments on Definition 1.2 The most familiar topological spaces are the
metric spaces. We shall assume some familiarity with metric spaces but shall give
the basic definitions, for the sake of completeness.

A metric space is a set X in which a distance function (or metric) p is defined,
with the following properties:

(@ 0<p(x,y) <ooforall xand y € X.

(b) p(x,y)=0ifandonlyif x =y

(¢) p(x,y) =p(y, x)forall xand y € X.

(d) p(x,y) < p(x, z) + p(z, y) for all x, y, and z € X.

Property (d) is called the triangle inequality.

If x e X and r > 0, the open ball with center at x and radius r is the set
{ye X:p(x,y) <r}.

If X 1s a metric space and if 7 is the collection of all sets E = X which are
arbitrary unions of open balls, then 7 is a topology in X. This is not hard to
verify; the intersection property depends on the fact that if x € B, n B,, where
B, and B, are open balls, then x is the center of an open ball B< B, n B,. We
leave this as an exercise.

For instance, in the real line R' a set is open if and only if it is a union of
open segments (a, b). In the plane R?, the open sets are those which are unions of
open circular discs.

Another topological space, which we shall encounter frequently, is the
extended real line [ — 00, o0]; its topology is defined by declaring the following
sets to be open: (a, b), [ — 00, a), (a, 0], and any union of segments of this type.

The definition of continuity given in Sec. 1.2(c) is a global one. Frequently it
is desirable to define continuity locally: A mapping f of X into Y is said to be
continuous at the point x, € X if to every neighborhood V of f(x,) there corre-
sponds a neighborhood W of x, such that f(W) < V.

(A neighborhood of a point x is, by definition, an open set which contains x.)

When X and Y are metric spaces, this local definition is of course the same
as the usual epsilon-delta definition, and is equivalent to the requirement that
lim f(x,) = f(x,) in Y whenever lim x, = x, in X.

The following easy proposition relates the local and global deﬁmtlons of con-
tinuity in the expected manner:

1.5 Proposition Let X and Y be topological spaces. A mapping f of X into Y is
continuous if and only if f is continuous at every point of X.
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Proor If fis continuous and x, € X, then f ~!(V) is a neighborhood of x,,
for every neighborhood V of f(x,). Since f(f ~}(V)) = V, it follows that f is
continuous at x .

If f is continuous at every point of X and if V is open in Y, every point
x € f ~}(V) has a neighborhood W, such that f(W,) = V. Therefore W, c
f~Y(V). 1t follows that f ~!(¥) is the union of the open sets W, so f~!(V) is
itself open. Thus f is continuous. 1]/

1.6 Comments on Definition 1.3 Let I be a o-algebra in a set X. Referring to
Properties (1) to (iii) of Definition 1.3(a), we immediately derive the following
facts.

(@) Since & = X¢, (i) and (ii) imply that & € M.

(b) Taking A,,, =A4,,, == Jin (ii1),we see that 4, U 4, U --- U 4,
eMif A, e Mfori=1,..., n
(c) Since

A= (0,

IN is closed under the formation of countable (and also finite) intersec-

tions.
(d) SinceA—B=B°n A,wehave A — BeIMif A € M and B € IN.

The prefix o refers to the fact that (ii1) is required to hold for all countable
unions of members of IN. If (ii1) is required for finite unions only, then M is called
an algebra of sets.

1.7 Theorem Let Y and Z be topological spaces, and let g: Y — Z be contin-
uous.

(@) If X is a topological space, if f: X — Y is continuous, and if h = g o f, then
h: X — Z is continuous.

(b) If X is a measurable space, if f: X — Y is measurable, and if h = g o f, then
h: X — Z is measurable.

Stated informally, continuous functions of continuous functions are contin-
uous; continuous functions of measurable functions are measurable.

Proor If V is open in Z, then g ~!(V) is open in Y, and

h=(V)y=f"Hg (V).

If fis continuous, it follows that h~!(V) is open, proving (a).
If fis measurable, it follows that A~ (V) is measurable, proving (b). ////
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1.8 Theorem Let u and v be real measurable functions on a measurable space
X, let ® be a continuous mapping of the plane into a topological space Y, and

define
h(x) = ®(u(x), v(x))

for x € X. Then h: X — Y is measurable.

PROOF Put f(x) = (u(x), v(x)). Then f maps X into the plane. Since h = ® o f,
Theorem 1.7 shows that it is enough to prove the measurability of f.

If R is any open rectangle in, the plane, with sides parallel to the axes,
then R is the cartesian product of two segments I, and I,,and

fTHR) =u" Iy no™ (),

which is measurable, by our assumption on u and v. Every open set V in the
plane is a countable union of such rectangles R;, and since

£ =f“(_k=) R,-) = O £RY,

f ~Y(V) is measurable. //]/

1.9 Let X be a measurable space. The following propositions are corollaries of
Theorems 1.7 and 1.8:

(@)

(b)

(c)

()

(e)

If f=u+ iv, where u and v are real measurable functions on X, then f is a
complex measurable function on X.

This follows from Theorem 1.8, with ®(z) = z.
If f=u + iv is a complex measurable function on X, then u, v, and | f | are real
measurable functions on X.

This follows from Theorem 1.7, with g(z) = Re (z), Im (z), and | z]|.
If f and g are complex measurable functions on X, then so are f + g and fg.

For real fand g this follows from Theorem 1.8, with

Ds,t)=s+t

and (s, t) = st. The complex case then follows from (a) and (b).
If E is a measurable set in X and if

1 if xe E

XelX) = {0 if x ¢ E

then xg is a measurable function.

This is obvious. We call y; the characteristic function of the set E. The
letter y will be reserved for characteristic functions throughout this book.
If f is a complex measurable function on X, there is a complex measurable
function o on X such that |a| = 1andf= a| f|.
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PrOOF Let E = {x: f(x) = 0}, let Y be the complex plane with the origin
removed, define ¢(z) = z/|z| for z € Y, and put

a(x) = o(f(x) + xe(x))  (x € X).

If xeE, afx)=1; if x ¢ E, a(x) =f(x)/| f(x)|. Since ¢ is continuous on Y
and since E is measurable (why?), the measurability of « follows from (c), (d),
and Theorem 1.7. /1//

We now show that o-algebras exist in great profusion.

1.10 Theorem If & is any collection of subsets of X, there exists a smallest
o-algebra M* in X such that & < IN*.

This 9R* is sometimes called the o-algebra generated by & .

PRrROOF Let Q be the family of all g-algebras 9 in X which contain & . Since
the collection of ali subsets of X is such a o-algebra, Q is not empty. Let I*
be the intersection of all M € Q. It is clear that & < IN* and that IM* lies in
every g-algebra in X which contains &% . To complete the proof, we have to
show that 9* is itself a o-algebra.
IfA,eM*forn=1,2,3,...,and if M € Q, then 4, € M, so | | 4, € M,
since M is a c-algebra. Since | | 4, € M for every M € Q, we conclude that
| ) 4, € M*. The other two defining properties of a o-algebra are verified in
the same manner. /1]/

1.11 Borel Sets Let X be a topological space. By Theorem 1.10, there exists a
smallest og-algebra # in X such that every open set in X belongs to 4. The
members of # are called the Borel sets of X.

In particular, closed sets are Borel sets (being, by definition, the complements
of open sets), and so are all countable unions of closed sets and all countable
intersections of open sets. These last two are called F_’s and Gj’s, respectively,
and play a considerable role. The notation is due to Hausdorff. The letters F and
G were used for closed and open sets, respectively, and ¢ refers to union (Summe),
o to intersection (Durchschnitt). For example, every half-open interval [a, b) is a
G; and an F, in R'.

Since 4 is a o-algebra, we may now regard X as a measurable space, with the
Borel sets playing the role of the measurable sets; more concisely, we consider the
measurable space (X, 4). If f: X - Y is a continuous mapping of X, where Y is
any topological space, then it is evident from the definitions that f (V) € £ for
every open set V in Y. In other words, every continuous mapping of X is Borel
measurable.

Borel measurable mappings are often called Borel mappings, or Borel func-
tions.
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1.12 Theorem Suppose N is a o-algebra in X, and Y is a topological space.
Let fmap X into Y.

(@) If Q is the collection of all sets E = Y such that f ~'(E) € M, then Q is a
o-algebra in Y.

(b) Iffis measurable and E is a Borel set in Y, then f ~'(E) € M.

() If Y =[—00, 0] and f (o, 00]) € M for every real o, then f is measur-
able.

(d) If f is measurable, if Z is a topological space, if g: Y— Z is a Borel
mapping, and if h = g o f, then h: X — Z is measurable.

Part (c) i1s a frequently used criterion for the measurability of real-valued
functions. (See also Exercise 3.) Note that (d) generalizes Theorem 1.7(b).

PROOF (a) follows from the relations

o =x,
fTHY —A)= X —f}(4),
and fTHA L A, U ) =f T A U A U

To prove (b), let Q be as in (a); the measurability of f implies that Q
contains all open sets in Y, and since Q is a g-algebra, Q2 contains all Borel
setsin Y.

To prove (c), let Q be the collection of all E = [ — o0, o0] such that
f~Y(E) e M. Choose a real number «, and choose a, < « so that a,— « as
n— oo. Since (a,, 0] € Q for each n, since

[_w’ a) = G [_w, CX,,] = G(arn w]c,
n=1 n=1

and since (a) shows that Q is a g-algebra, we see that [ — o0, a) € Q. The same
is then true of

(a9 B) = [— o0, B) a (aa (D]

Since every open set in [ — o0, 0c0] i1s a countable union of segments of the
above types, 2 contains every open set. Thus f'is measurable.

To prove (d), let V = Z be open. Then g~ (V) is a Borel set of Y, and
since

h='(V)=f"Y g~ '(V)),
(b) shows that h~ (V) € M. /11/

1.13 Definition Let {a,} be a sequence in [ — 00, 0], and put

bk=sup {ak’ak+la ak+29"’} (k=1’ 2’ 33-") (1)
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and
B =inf {b,, b,, b5, ...}. (2)
We call § the upper limit of {a,}, and write
p = lim sup a,. (3)

The following properties are easily verified: First, b, > b, > b; > ---, so
that b, — B as k— oo; secondly, there is a subsequence {a,} of {a,} such that
a,— f asi— oo, and f is the largest number with this property.

The lower limit is defined analogously: simply interchange sup and inf in
(1) and (2). Note that

lim inf @, = —lim sup (—a,). 4)

n— oo n— oo

If {a,} converges, then evidently
lim sup a, =lim inf g, = lim a,. (5)

Suppose {f,} is a sequence of extended-real functions on a set X. Then
sup f, and lim sup f, are the functions defined on X by

<sup f..>(x) = sup (f,(x)), (6)
<lim sup f,,)(x) = lim sup (f,(x)). (7)

If
f(x) = lim f,(x), (8)

the limit being assumed to exist at every x € X, then we call f the pointwise
limit of the sequence {f,}.

1.14 Theorem Iff,: X — [— o0, o0] is measurable, forn=1, 2, 3, ..., and
g =supf,, h = lim sup f,,

n>1 n— oo

then g and h are measurable.

PROOF g~ '((o, 0]) = | )=, £ *((«, o0]). Hence Theorem 1.12(c) implies that

g is measurable. The same result holds of course with inf in place of sup, and
since

h = inf {sup fi},

k=21 ik

it follows that h i1s measurable. /1/]
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Corollaries

(@) The limit of every pointwise convergent sequence of complex measurable
functions is measurable.

(b) Iff and g are measurable (with range in [ — oo, 00]), then so are max {f, g}
and min {f, g}. In particular, this is true of the functions

f*=max {f,0} and f~ = —min {f, 0}.

1.15 The above functions f ¥ and f ~ are called the positive and negative parts of f.
We have |f|=f*+f" and f=f" —f~, a standard representation of f as a
difference of two nonnegative functions, with a certain minimality property:

Proposition If f=9g — h,g>0,and h >0, thenf* <gandf~ < h.

PROOF f < g and 0 < g clearly implies max {f, 0} < g. //]/

Simple Functions

1.16 Definition A complex function s on a measurable space X whose range
consists of only finitely many points will be called a simple function. Among
these are the nonnegative simple functions, whose range is a finite subset of
[0, o0). Note that we explicitly exclude oo from the values of a simple func-
tion.

If «,, ..., a, are the distinct values of a simple function s, and if we set

A; = {x: s(x) = o;}, then clearly

S = ZaixAp
=1

]

where g 4, is the characteristic function of A;, as defined in Sec. 1.9(d).
It is also clear that s is measurable if and only if each of the sets A4, is
measurable.

1.17 Theorem Let f: X — [0, c0] be measurable. There exist simple measur-
able functions s, on X such that

(@ 0<s;<s,<---<f.
(b) s,(x)—>f(x) as n— oo, for every x € X.

PRrROOF Put §, = 27" To each positive integer n and each real number ¢ cor-
responds a unique integer k = k,(t) that satisfies kd, < t < (k + 1)d, . Define

k06, f0<t<n

nlt) = {n ifn<t< oo. (1)
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Each ¢, is then a Borel function on [0, 0],
t—0,<@,t)<t if0<t<n, (2)

0<¢p;<@p,<---<t and ¢,(t)—>t as n— oo, for every t e [0, c0]. It
follows that the functions

Sp=@n°f (3)
satisfy (a) and (b); they are measurable, by Theorem 1.12(d). /1//

Elementary Properties of Measures
1.18 Definition

(@) A positive measure is a function y, defined on a o-algebra I, whose range
is in [0, co] and which is countably additive. This means that if {A,} is a
disjoint countable collection of members of IR, then

/"< O Ai) = ';il#(Ai). (1)

i=1

To avoid trivialities, we shall also assume that u(A4) < oo for at least one
A e IN.

(b) A measure space is a measurable space which has a positive measure
defined on the o-algebra of its measurable sets.

(¢c) A complex measure is a complex-valued countably additive function
defined on a o-algebra.

Note: What we have called a positive measure i1s frequently just called a
measure; we add the word “ positive” for emphasis. If y(E) = 0 for every E € IR,
then u is a positive measure, by our definition. The value oo is admissible for a
positive measure; but when we talk of a complex measure g, it is understood that
U(E) is a complex number, for every E € M. The real measures form a subclass of
the complex ones, of course.

1.19 Theorem Let u be a positive measure on a o-algebra M. Then

(@) w()=0. '
b) wA; v v A,)=uwA)+ -+ uA,)ifA,, ..., A, are pairwise disjoint
members of IN.

(c) A = Bimplies w(A) < u(B)if A € M, B e M.
(d) wA,)—> wA)asn— o0 if A=\J5-, Ay, Ay € M, and

AICA2CA3C"'.
(@) wA)— uA)asn— 0 if A=), A,, A, €W,

A > A; 243>,
and u(A,) is finite.
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As the proof will show, these properties, with the exception of (c), also hold
for complex measures; (b) is called finite additivity; (c) is called monotonicity.

PROOF

(@@ Take A € M so that u(4) < oo, and take A, =4 and A, = A; =+ =
&5 in 1.18(1).

(b) TakeA,,;, =A4,,, == in 1.1§(1).

(c) Since B=Au (B— A) and A n (B — A) = &, we see that (b) implies
W(B) = w(A) + W(B — A) = p(A).

(d) Put Bj=A,,and put B,=A4,— A,_,forn=2,3,4,.... Then B, € I,
B,nB;=gifi#j,A,=B; v - U B,,and A =2, B;. Hence

MA) = T u(B) and )= . u(B)

i=1

Now (d) follows, by the definition of the sum of an infinite series.
(e) PutC,=A, —A,. ThenC,cC,cCyc -,

WC,) = w(A,) — u(4,),

A, — A=J C,, and so (d) shows that

WAy — w(A) = (A, — A) = im u(C,) = u(4,) — lim u(4,).

n— oo n— oo

This implies (e). /1]

1.20 Examples The construction of interesting measure spaces requires some
labor, as we shall see. However, a few simple-minded examples can be given
immediately:

(@) For any E < X, where X is any set, define u(E) = oo if E is an infinite set,
and let u(E) be the number of points in E if E is finite. This u is called the
counting measure on X.

(b) Fix x, € X, define w(E)=1 if x, € E and w(E) =0 if x, ¢ E, for any
E < X. This 1 may be called the unit mass concentrated at x,.

(c) Let u be the counting measure on the set {1, 2, 3,...},let 4,={n,n + 1,
n+2...). Then (| 4,= but w(A4,)= o for n=1, 2, 3, .... This
shows that the hypothesis

WA,;) < o
is not superfluous in Theorem 1.19(e).
1.21 A Comment on Terminology One frequently sees measure spaces referred to

as “ordered triples” (X, I, u) where X is a set, M is a g-algebra in X, and pisa
measure defined on M. Similarly, measurable spaces are “ordered, pairs,” (X, IMN).
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This is logically all right, and often convenient, though somewhat redundant. For
instance, in (X, IN) the set X is merely the largest member of M, so if we know M
we also know X. Similarly, every measure has a o-algebra for its domain, by
definition, so if we know a measure u we also know the g-algebra I on which u
is defined and we know the set X in which I is a g-algebra.

It is therefore perfectly legitimate to use expressions like “Let u be a
measure ” or, if we wish to emphasize the o-algebra or the set in question, to say
“Let u be a measure on 9N ” or “Let u be a measure on X.”

What is logically rather meaningless but customary (and we shall often
follow mathematical custom rather than logic) is to say “Let X be a measure
space”’; the emphasis should not be on the set, but on the measure. Of course,
when this wording is used, it is tacitly understood that there is a measure defined
on some o-algebra in X and that it is this measure which is really under dis-
cussion.

Similarly, a topological space is an ordered pair (X, 1), where 7 is a topology
in the set X, and the significant data are contained in 7, not in X, but “the
topological space X ” is what one talks about.

This sort of tacit convention is used throughout mathematics. Most mathe-
matical systems are sets with some class of distinguished subsets or some binary
operations or some relations (which are required to have certain properties), and
one can list these and then describe the system as an ordered pair, triple, etc.,
depending on what is needed. For instance, the real line may be described as a
quadruple (R!, +, -, <), where +, -, and < satisfy the axioms of a complete
archimedean ordered field. But it is a safe bet that very few mathematicians think
of the real field as an ordered quadruple.

Arithmetic in [0, c0]

1.22 Throughout integration theory, one inevitably encounters co. Qne reason is
that one wants to be able to integrate over sets of infinite measure; after all, the
real line has infinite length. Another reason is that even if one is primarily inter-
ested in real-valued functions, the lim sup of a sequence of positive real functions
or the sum of a sequence of positive real functions may well be co at some points,
and much of the elegance of theorems like 1.26 and 1.27 would be lost if one had
to make some special provisions whenever this occurs.
Letusdefinea+ «o = 0 +a=0i1f0<a< oo, and

00 if0<a< oo

a'oozoo'“={o if a = 0;

sums and products of real numbers are of course defined in the usual way.

It may seem strange to define 0 - co = 0. However, one verifies without diffi-
culty that with this definition the commutative, associative, and distributive laws
hold in [0, oco] without any restriction.
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The cancellation laws have to be treated with some care: a4+ b=a+ ¢
implies b = ¢ only when a < o0, and ab = ac implies b = ¢ only when 0 < a < o0.
Observe that the following useful proposition holds:

If0<a, <a,<---,0<b,<b,<---,a,—a,and b,— b, then a,b,— ab.

If we combine this with Theorems 1.17 and 1.14, we see that sums and pro-
ducts of measurable functions into [0, co] are measurable.

Integration of Positive Functions

In this section, I will be a o-algebra in a set X and p will be a positive measure
on IN.

1.23 Definition If s: X — [0, o0) is a measurable simple function, of the form

S = Z % XA (1)
i=1
where «,, ..., a, are the distinct values of s (compare Definition 1.16), and if
E € M, we define
fs du = Z o; W(A; N E). 2
E i=1

The convention 0 - o0 = 0 is used here; it may happen that «; = 0 for some i
and that u(4; N E) = oo.
If f: X— [0, co] is measurable, and E € I, we define

deu=SUszdu, 3)

the supremum being taken over all simple measurable functions s such that
0<s<f

The left member of (3) is called the Lebesgue integral of f over E, with
respect to the measure u. It is a number in [0, oo].

Observe that we apparently have two definitions for [ f du if f is simple,
namely, (2) and (3). However, these assign the same value to the integral,
since f is, in this case, the largest of the functions s which occur on the right
of (3).

1.24 The following propositions are immediate consequences of the definitions.
The functions and sets occurring in them are assumed to be measurable:

(@ If0O<f<g,then [g fdu < [ggdu.
(b) IfAcBandeO,thenIAfduSIdeu.
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(c) Iff =0and cis a constant,0 < ¢ < o0, then

chdu=cffd,u:
E E

(d) Iff(x)=O0forall x € E, then |z fdu =0, even if y(E) = .
(e) If u(E) =0, then (g fdu = 0, even if f(x) = oo for every x € E.
(f) Iff= 0, then [ fdu = [x xg f dp.

This last result shows that we could have restricted our definition of integra-
tion to integrals over all of X, without losing any generality. If we wanted to
integrate over subsets, we could then use (f) as the definition. It is purely a
matter of taste which definition is preferred.

One may also remark here that every measurable subset E of a measure
space X i1s again a measure space, in a perfectly natural way: The new measur-
able sets are simply those measurable subsets of X which lie in E, and the
measure is unchanged, except that its domain is restricted. This shows again that
as soon as we have integration defined over every measure space, we automati-
cally have it defined over every measurable subset of every measure space.

1.25 Proposition Let s and t be nonnegative measurable simple functions on X.
F